Update handler.py
Browse files- handler.py +29 -7
handler.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from typing import Any, Dict, List
|
2 |
|
|
|
3 |
from fastrag.rankers import QuantizedBiEncoderRanker
|
4 |
|
5 |
|
@@ -9,13 +10,34 @@ class EndpointHandler:
|
|
9 |
self.ranker = QuantizedBiEncoderRanker(model_name_or_path=model_id)
|
10 |
|
11 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
12 |
-
query = data.get("query")
|
13 |
-
|
14 |
-
|
|
|
15 |
top_k = data.get("top_k", None)
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
|
|
|
1 |
from typing import Any, Dict, List
|
2 |
|
3 |
+
from haystack.schema import Document
|
4 |
from fastrag.rankers import QuantizedBiEncoderRanker
|
5 |
|
6 |
|
|
|
10 |
self.ranker = QuantizedBiEncoderRanker(model_name_or_path=model_id)
|
11 |
|
12 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
13 |
+
query = data.get("query", None)
|
14 |
+
queries = data.get("queries", None)
|
15 |
+
documents = data.get("documents", None)
|
16 |
+
batch_size = data.get("batch_size", None)
|
17 |
top_k = data.get("top_k", None)
|
18 |
|
19 |
+
if query is not None:
|
20 |
+
assert isinstance(query, str), "Expected query to be a string"
|
21 |
+
assert isinstance(documents, list), "Expected documents to be a list"
|
22 |
+
assert all(
|
23 |
+
isinstance(d, dict) for d in documents
|
24 |
+
), "Expected each document in documents to be a dictionary"
|
25 |
+
documents = [Document.from_dict(d) for d in documents]
|
26 |
+
return self.ranker.predict(query=query, documents=documents, top_k=top_k)
|
27 |
+
|
28 |
+
elif queries is not None:
|
29 |
+
assert isinstance(queries, list), "Expected queries to be a list"
|
30 |
+
assert all(
|
31 |
+
isinstance(query, str) for query in queries
|
32 |
+
), "Expected each query in queries to be a string"
|
33 |
+
assert isinstance(documents, list), "Expected documents to be a list"
|
34 |
+
assert all(
|
35 |
+
all(isinstance(d, dict) for d in doc) for doc in documents
|
36 |
+
), "Expected each document in list of documents to be a dictionary"
|
37 |
+
documents = [Document.from_dict(d) for d in documents]
|
38 |
+
return self.ranker.predict_batch(
|
39 |
+
queries=queries, documents=documents, batch_size=batch_size, top_k=top_k
|
40 |
+
)
|
41 |
|
42 |
+
else:
|
43 |
+
raise ValueError("Expected either query or queries")
|