File size: 1,192 Bytes
f2a4115 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
---
language: en
pipeline_tag: zero-shot-classification
tags:
- distilbert
datasets:
- multi_nli
metrics:
- accuracy
---
# ONNX convert typeform/distilbert-base-uncased-mnli
## Conversion of [typeform/distilbert-base-uncased-mnli](typeform/distilbert-base-uncased-mnli)
This is the [uncased DistilBERT model](https://huggingface.co/distilbert-base-uncased) fine-tuned on [Multi-Genre Natural Language Inference](https://huggingface.co/datasets/multi_nli) (MNLI) dataset for the zero-shot classification task. The model is not case-sensitive, i.e., it does not make a difference between "english" and "English".
## Training
Training is done on a [p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) AWS EC2 instance (1 NVIDIA Tesla V100 GPUs), with the following hyperparameters:
```
$ run_glue.py \
--model_name_or_path distilbert-base-uncased \
--task_name mnli \
--do_train \
--do_eval \
--max_seq_length 128 \
--per_device_train_batch_size 16 \
--learning_rate 2e-5 \
--num_train_epochs 5 \
--output_dir /tmp/distilbert-base-uncased_mnli/
```
## Evaluation results
| Task | MNLI | MNLI-mm |
|:----:|:----:|:----:|
| | 82.0 | 82.0 | |