osiria commited on
Commit
7f6e351
·
1 Parent(s): cdeb041

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md CHANGED
@@ -1,3 +1,77 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - it
5
+ widget:
6
+ - text: "una fantastica giornata di #calcio! grande prestazione del mister e della squadra"
7
+ example_title: "Example 1"
8
+ - text: "il governo dovrebbe fare politica, non soltanto propaganda! #vergogna"
9
+ example_title: "Example 2"
10
+ - text: "che serata da sogno sul #redcarpet! grazie a tutti gli attori e registi del cinema italiano #oscar #awards"
11
+ example_title: "Example 3"
12
  ---
13
+
14
+ --------------------------------------------------------------------------------------------------
15
+
16
+ <body>
17
+ <span class="vertical-text" style="background-color:lightgreen;border-radius: 3px;padding: 3px;"> </span>
18
+ <br>
19
+ <span class="vertical-text" style="background-color:orange;border-radius: 3px;padding: 3px;">    Task: Sentiment Analysis</span>
20
+ <br>
21
+ <span class="vertical-text" style="background-color:lightblue;border-radius: 3px;padding: 3px;">    Model: BERT-TWEET</span>
22
+ <br>
23
+ <span class="vertical-text" style="background-color:tomato;border-radius: 3px;padding: 3px;">    Lang: IT</span>
24
+ <br>
25
+ <span class="vertical-text" style="background-color:lightgrey;border-radius: 3px;padding: 3px;">  </span>
26
+ <br>
27
+ <span class="vertical-text" style="background-color:#CF9FFF;border-radius: 3px;padding: 3px;"> </span>
28
+ </body>
29
+
30
+ --------------------------------------------------------------------------------------------------
31
+
32
+ <h3>Model description</h3>
33
+
34
+ This is a <b>BERT</b> <b>[1]</b> uncased model for the <b>Italian</b> language, fine-tuned for Sentiment Analysis (<b>positive</b> and <b>negative</b> classes only) on the [SENTIPOLC-16](https://www.evalita.it/campaigns/evalita-2016/tasks-challenge/sentipolc/) dataset, using <b>BERT-TWEET-ITALIAN</b> ([bert-tweet-base-italian-uncased](https://huggingface.co/osiria/bert-tweet-base-italian-uncased)) as a pre-trained model.
35
+
36
+ <h3>Training and Performances</h3>
37
+
38
+ The model is trained to perform binary sentiment classification (<b>positive</b> vs <b>negative</b>) and it's meant to be used primarily on tweets or other social media posts. It has been fine-tuned for Sentiment Analysis, using the SENTIPOLC-16 dataset, for 3 epochs with a constant learning rate of 1e-5 and exploiting class weighting to compensate for the class imbalance.
39
+ Instances having both positive and negative sentiment have been excluded, resulting in 4154 training instances and 1050 test instances
40
+
41
+ The performances on the test set are reported in the following table:
42
+
43
+ | Accuracy | Recall | Precision | F1 |
44
+ | ------ | ------ | ------ | ------ |
45
+ | 83.67 | 83.15 | 80.48 | 81.49 |
46
+
47
+ The Recall, Precision and F1 metrics are averaged over the two classes
48
+
49
+ <h3>Quick usage</h3>
50
+
51
+ ```python
52
+ from transformers import BertTokenizerFast, BertForSequenceClassification
53
+
54
+ tokenizer = BertTokenizerFast.from_pretrained("osiria/bert-tweet-italian-uncased-sentiment")
55
+ model = BertForSequenceClassification.from_pretrained("osiria/bert-tweet-italian-uncased-sentiment")
56
+
57
+ from transformers import pipeline
58
+ classifier = pipeline("text-classification", model = model, tokenizer = tokenizer)
59
+
60
+ classifier("una fantastica giornata di #calcio! grande prestazione del mister e della squadra")
61
+
62
+ # [{'label': 'POSITIVE', 'score': 0.9883694648742676}]
63
+ ```
64
+
65
+ <h3>References</h3>
66
+
67
+ [1] https://arxiv.org/abs/1810.04805
68
+
69
+ <h3>Limitations</h3>
70
+
71
+ This model was trained on tweets, so it's mainly suitable for general-purpose social media text processing, involving short texts written in a social network style.
72
+ It might show limitations when it comes to longer and more structured text, or domain-specific text.
73
+
74
+ <h3>License</h3>
75
+
76
+ The model is released under <b>Apache-2.0</b> license
77
+