osiria commited on
Commit
c45b159
·
1 Parent(s): 6300fb0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +132 -0
README.md CHANGED
@@ -1,3 +1,135 @@
1
  ---
2
  license: mit
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ language:
4
+ - it
5
  ---
6
+ --------------------------------------------------------------------------------------------------
7
+
8
+ <body>
9
+ <span class="vertical-text" style="background-color:lightgreen;border-radius: 3px;padding: 3px;"> </span>
10
+ <br>
11
+ <span class="vertical-text" style="background-color:orange;border-radius: 3px;padding: 3px;">  </span>
12
+ <br>
13
+ <span class="vertical-text" style="background-color:lightblue;border-radius: 3px;padding: 3px;">    Model: DIABLO 🔥</span>
14
+ <br>
15
+ <span class="vertical-text" style="background-color:tomato;border-radius: 3px;padding: 3px;">    Lang: IT</span>
16
+ <br>
17
+ <span class="vertical-text" style="background-color:lightgrey;border-radius: 3px;padding: 3px;">  </span>
18
+ <br>
19
+ <span class="vertical-text" style="background-color:#CF9FFF;border-radius: 3px;padding: 3px;"> </span>
20
+ </body>
21
+
22
+ --------------------------------------------------------------------------------------------------
23
+
24
+ <h3>Model description</h3>
25
+
26
+ This model is a <b>conversational</b> language model for the <b>Italian</b> language, based on a GPT-like <b>[1]</b> architecture (more specifically, the model has been obtained by modifying Meta's XGLM architecture <b>[2]</b> and exploiting its 1.7B checkpoint).
27
+
28
+ The model has been trained on a corpus of \~50K Italian conversational exchanges for \~3 epochs (\~15K steps with a batch size of 10), using 3 different learning rates (1e-5, 2e-6, 1e-6) and exploiting FP16 quantization to manage the considerable size of the model.
29
+ The training corpus has been built by using Meta's Blenderbot <b>[3]</b> to generate 50K conversational exchanges in English, and then translating them to the Italian language using a machine traslation model.
30
+
31
+ The current release is designed for brief and informal conversations (small talk) covering light topics (mainly food, entertainment and holidays), but several generalizations and improvements will be introduced in future releases.
32
+
33
+
34
+ <h3>Quick usage</h3>
35
+
36
+ In order to use the model for inference, the following pipeline is needed:
37
+
38
+ ```python
39
+ from transformers import AutoTokenizer, AutoModelForCausalLM
40
+ import torch
41
+ import re
42
+
43
+ tokenizer = AutoTokenizer.from_pretrained("osiria/diablo-italian-chatbot-1.3b")
44
+ model = AutoModelForCausalLM.from_pretrained("osiria/diablo-italian-chatbot-1.3b")
45
+ device = torch.device("cpu")
46
+ model = model.to(device)
47
+ model.eval()
48
+
49
+ class Diablo:
50
+
51
+ def __init__(self, tokenizer, model):
52
+ self.tokenizer = tokenizer
53
+ self.model = model
54
+
55
+ def _check_sublist(self, lst, sub_lst, sep = " "):
56
+
57
+ l_type = type(lst[0])
58
+ lst = sep.join(list(map(str, lst)))
59
+ sub_lst = sep.join(list(map(str, sub_lst)))
60
+
61
+ return sub_lst in lst
62
+
63
+ def _exclude_sublist(self, lst, sub_lst, sep = " "):
64
+
65
+ l_type = type(lst[0])
66
+ lst = sep.join(list(map(str, lst)))
67
+ sub_lst = sep.join(list(map(str, sub_lst)))
68
+ lst = re.sub("\s+", " ", lst.replace(sub_lst, "")).strip().split(sep)
69
+ lst = list(map(l_type, lst))
70
+
71
+ return lst
72
+
73
+ def generate(self, prompt, sep = "|", max_tokens = 100, excluded = [[40, 19]],
74
+ lookback = 1, stop_tokens = [5, 27, 33], sample = False, top_k = 3):
75
+
76
+ tokens = tokenizer.encode(prompt + sep)
77
+ tokens_generated = []
78
+ while tokens[-1] not in stop_tokens and len(tokens) < max_tokens:
79
+ output = model.forward(input_ids=torch.tensor([tokens]).to(device)).logits[0,-1]
80
+ output = torch.softmax(output, dim = 0)
81
+ candidates = torch.topk(output, k = top_k)
82
+ if sample:
83
+ indices = candidates.indices
84
+ scores = candidates.values
85
+ next_token = indices[torch.multinomial(scores, 1)[0].item()]
86
+ else:
87
+ next_token = candidates.indices[0]
88
+ next_token = next_token.item()
89
+ sub_tokens = tokens_generated[-lookback:] + [next_token]
90
+ if len(tokens_generated) >= (lookback + 1) and next_token in tokens_generated[-(lookback + 1):]:
91
+ next_token = candidates.indices[1]
92
+ next_token = next_token.item()
93
+ elif len(tokens_generated) >= lookback and self._check_sublist(tokens_generated, sub_tokens):
94
+ next_token = candidates.indices[1]
95
+ next_token = next_token.item()
96
+ tokens = tokens + [next_token]
97
+ tokens_generated = tokens_generated + [next_token]
98
+ for ex_lst in excluded:
99
+ tokens = self._exclude_sublist(tokens, ex_lst)
100
+ output = tokenizer.decode(tokens, skip_special_tokens=True)
101
+ output = output.split(sep)[-1].strip()
102
+ output = output[0].upper() + output[1:]
103
+ if output[-1] == tokenizer.decode(stop_tokens[0]):
104
+ output = output[:-1]
105
+
106
+ return output
107
+
108
+ diablo = Diablo(tokenizer = tokenizer, model = model)
109
+
110
+ prompt = "Ciao, come stai?"
111
+
112
+ # setting "sample = True" the model will be more creative but occasionally less accurate
113
+ print("OUTPUT:", diablo.generate(prompt, sample = False))
114
+
115
+ # OUTPUT: Sto bene, grazie
116
+ ```
117
+
118
+
119
+ <h3>Limitations</h3>
120
+
121
+ This model has been mainly trained on machine-translated (and synthetic) conversational data, so it might behave erratically when presented with prompts which are too far away from its training set.
122
+ Moreover, the heterogeneous nature of the pretraining dataset, together with the limits of the conversational data, might lead the model to produce biased or offensive content with respect to gender, race, ideologies, and political or religious beliefs.
123
+ These limitations imply that the model and its outputs should be used with caution, and should not be involved in situations that require the generated text to be fair or true.
124
+
125
+ <h3>References</h3>
126
+
127
+ [1] https://arxiv.org/abs/2005.14165
128
+
129
+ [2] https://arxiv.org/abs/2112.10668
130
+
131
+ [3] https://arxiv.org/pdf/2004.13637.pdf
132
+
133
+ <h3>License</h3>
134
+
135
+ The model is released under <b>MIT</b> license