pabRomero commited on
Commit
0b4e63a
·
verified ·
1 Parent(s): a7fe9c5

Training complete

Browse files
Files changed (1) hide show
  1. README.md +11 -9
README.md CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [allenai/biomed_roberta_base](https://huggingface.co/allenai/biomed_roberta_base) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.0734
24
- - Precision: 0.7964
25
- - Recall: 0.7802
26
- - F1: 0.7882
27
- - Accuracy: 0.9771
28
 
29
  ## Model description
30
 
@@ -50,20 +50,22 @@ The following hyperparameters were used during training:
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
  - lr_scheduler_warmup_ratio: 0.1
53
- - num_epochs: 2
54
  - mixed_precision_training: Native AMP
55
 
56
  ### Training results
57
 
58
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
59
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
60
- | No log | 1.0 | 231 | 0.0866 | 0.7535 | 0.7694 | 0.7614 | 0.9741 |
61
- | No log | 2.0 | 462 | 0.0734 | 0.7964 | 0.7802 | 0.7882 | 0.9771 |
 
 
62
 
63
 
64
  ### Framework versions
65
 
66
  - Transformers 4.44.2
67
- - Pytorch 2.4.0+cu121
68
  - Datasets 2.21.0
69
  - Tokenizers 0.19.1
 
20
 
21
  This model is a fine-tuned version of [allenai/biomed_roberta_base](https://huggingface.co/allenai/biomed_roberta_base) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.0739
24
+ - Precision: 0.8048
25
+ - Recall: 0.7953
26
+ - F1: 0.8000
27
+ - Accuracy: 0.9775
28
 
29
  ## Model description
30
 
 
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
  - lr_scheduler_warmup_ratio: 0.1
53
+ - num_epochs: 4
54
  - mixed_precision_training: Native AMP
55
 
56
  ### Training results
57
 
58
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
59
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
60
+ | No log | 1.0 | 231 | 0.0877 | 0.7475 | 0.7719 | 0.7595 | 0.9733 |
61
+ | No log | 2.0 | 462 | 0.0766 | 0.7797 | 0.7900 | 0.7848 | 0.9756 |
62
+ | 0.2598 | 3.0 | 693 | 0.0730 | 0.8042 | 0.7949 | 0.7995 | 0.9774 |
63
+ | 0.2598 | 4.0 | 924 | 0.0739 | 0.8048 | 0.7953 | 0.8000 | 0.9775 |
64
 
65
 
66
  ### Framework versions
67
 
68
  - Transformers 4.44.2
69
+ - Pytorch 2.4.1+cu121
70
  - Datasets 2.21.0
71
  - Tokenizers 0.19.1