Training complete
Browse files
README.md
CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [allenai/biomed_roberta_base](https://huggingface.co/allenai/biomed_roberta_base) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Precision: 0.
|
25 |
-
- Recall: 0.
|
26 |
-
- F1: 0.
|
27 |
-
- Accuracy: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -43,32 +43,27 @@ More information needed
|
|
43 |
### Training hyperparameters
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
-
- learning_rate:
|
47 |
-
- train_batch_size:
|
48 |
-
- eval_batch_size:
|
49 |
- seed: 42
|
50 |
-
- gradient_accumulation_steps: 4
|
51 |
-
- total_train_batch_size: 64
|
52 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
- lr_scheduler_type: linear
|
54 |
-
- lr_scheduler_warmup_ratio: 0.
|
55 |
-
- num_epochs:
|
56 |
- mixed_precision_training: Native AMP
|
57 |
|
58 |
### Training results
|
59 |
|
60 |
-
| Training Loss | Epoch
|
61 |
-
|
62 |
-
| No log | 0
|
63 |
-
|
|
64 |
-
| 0.19 | 2.9990 | 758 | 0.0802 | 0.8125 | 0.7932 | 0.8028 | 0.9768 |
|
65 |
-
| 0.0433 | 4.0 | 1011 | 0.0865 | 0.8131 | 0.8103 | 0.8117 | 0.9772 |
|
66 |
-
| 0.0433 | 4.9852 | 1260 | 0.0951 | 0.8139 | 0.8085 | 0.8112 | 0.9769 |
|
67 |
|
68 |
|
69 |
### Framework versions
|
70 |
|
71 |
- Transformers 4.44.2
|
72 |
-
- Pytorch 2.4.
|
73 |
- Datasets 2.21.0
|
74 |
- Tokenizers 0.19.1
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [allenai/biomed_roberta_base](https://huggingface.co/allenai/biomed_roberta_base) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.0596
|
24 |
+
- Precision: 0.8360
|
25 |
+
- Recall: 0.8339
|
26 |
+
- F1: 0.8350
|
27 |
+
- Accuracy: 0.9815
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
43 |
### Training hyperparameters
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 5e-05
|
47 |
+
- train_batch_size: 32
|
48 |
+
- eval_batch_size: 32
|
49 |
- seed: 42
|
|
|
|
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_ratio: 0.1
|
53 |
+
- num_epochs: 2
|
54 |
- mixed_precision_training: Native AMP
|
55 |
|
56 |
### Training results
|
57 |
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
59 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
60 |
+
| No log | 1.0 | 231 | 0.0783 | 0.7809 | 0.8068 | 0.7936 | 0.9766 |
|
61 |
+
| No log | 2.0 | 462 | 0.0596 | 0.8360 | 0.8339 | 0.8350 | 0.9815 |
|
|
|
|
|
|
|
62 |
|
63 |
|
64 |
### Framework versions
|
65 |
|
66 |
- Transformers 4.44.2
|
67 |
+
- Pytorch 2.4.1+cu121
|
68 |
- Datasets 2.21.0
|
69 |
- Tokenizers 0.19.1
|
runs/Sep05_12-11-55_83295d15965e/events.out.tfevents.1725538316.83295d15965e.5325.5
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a20e2a4f7183dc37f8f35e9c361b585c5cef4e09d266514f0aafb3ba2c6dedd
|
3 |
+
size 7031
|