File size: 9,715 Bytes
d0afcea
 
 
 
e8e856d
d0afcea
 
 
 
e8e856d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0afcea
 
 
 
ca1181a
d0afcea
f1458f9
ca1181a
f1458f9
ca1181a
 
f1458f9
ca1181a
 
f1458f9
 
 
 
 
c1d4f99
 
 
 
 
 
 
 
f1458f9
c1d4f99
 
 
 
d0afcea
f1458f9
d0afcea
 
 
 
 
 
 
5f3d251
 
 
 
 
 
 
 
 
 
 
d0afcea
 
5f990de
d0afcea
 
 
 
 
 
 
 
 
 
 
 
5f990de
 
 
 
 
 
 
 
 
 
 
 
 
ca1181a
5f990de
 
 
d0afcea
 
 
 
 
 
 
 
 
 
5f3d251
d0afcea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1458f9
d0afcea
 
 
 
 
 
 
 
 
f1458f9
d0afcea
 
 
 
 
 
 
 
 
5f3d251
d0afcea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01e7875
 
 
 
 
 
 
 
 
 
 
 
 
 
e8e856d
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
---
language:
- en
license: other
library_name: transformers
datasets:
- psmathur/orca_mini_v1_dataset
- ehartford/dolphin
pipeline_tag: text-generation
model-index:
- name: orca_mini_v3_70b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 71.25
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/orca_mini_v3_70b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 87.85
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/orca_mini_v3_70b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 70.18
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/orca_mini_v3_70b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 61.27
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/orca_mini_v3_70b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 82.72
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/orca_mini_v3_70b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 40.86
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/orca_mini_v3_70b
      name: Open LLM Leaderboard
---

# orca_mini_v3_70b

**A Llama2-70b model trained on Orca Style datasets.**


<img src="https://huggingface.co/pankajmathur/orca_mini_v5_8b/resolve/main/orca_minis_small.jpeg" width="auto" />

<strong>
Passionate about Generative AI? I help companies to privately train and deploy custom LLM/MLLM affordably. For startups, I can even assist with securing GPU grants to get you started. Let's chat!

<a href="https://www.linkedin.com/in/pankajam" target="_blank">https://www.linkedin.com/in/pankajam</a> Looking forward to connecting!
</strong>

<br>



### quantized versions

Big thanks to [@TheBloke](https://huggingface.co/TheBloke)

1) https://huggingface.co/TheBloke/orca_mini_v3_70B-GGML

2) https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ

<br>

#### license disclaimer:

This model is bound by the license & usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind.

<br>

## Evaluation

We evaluated orca_mini_v3_70b on a wide range of tasks using [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) from EleutherAI. 

Here are the results on metrics used by [HuggingFaceH4 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)

|||
|:------:|:--------:|
|**Task**|**Value**|
|*ARC*|0.7125|
|*HellaSwag*|0.8785|
|*MMLU*|0.7018|
|*TruthfulQA*|0.6127|
|*Winogrande*|0.8272|
|*GSM8K*|0.4086|
|*DROP*|0.4017|
|**Total Average**|**0.649**|


### Prompt Format

```
### System:
You are an AI assistant that follows instruction extremely well. Help as much as you can.

### User:
Tell me about Orcas.

### Assistant:

```

#### OobaBooga Instructions:

This model required upto 45GB GPU VRAM in 4bit so it can be loaded directly on Single RTX 6000/L40/A40/A100/H100 GPU or Double RTX 4090/L4/A10/RTX 3090/RTX A5000
So, if you have access to Machine with 45GB GPU VRAM and have installed [OobaBooga Web UI](https://github.com/oobabooga/text-generation-webui) on it.
You can just download this model by using HF repo link directly on OobaBooga Web UI "Model" Tab/Page & Just use **load-in-4bit** option in it.

![model_load_screenshot](https://huggingface.co/pankajmathur/model_101/resolve/main/oobabooga_model_load_screenshot.png)


After that go to Default Tab/Page on OobaBooga Web UI and **copy paste above prompt format into Input** and Enjoy!

![default_input_screenshot](https://huggingface.co/pankajmathur/model_101/resolve/main/default_input_screenshot.png)



#### Code Instructions:

Below shows a code example on how to use this model

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

tokenizer = AutoTokenizer.from_pretrained("psmathur/orca_mini_v3_70b")
model = AutoModelForCausalLM.from_pretrained(
  "psmathur/orca_mini_v3_70b",
  torch_dtype=torch.float16,
  load_in_4bit=True,
  low_cpu_mem_usage=True,
  device_map="auto"
)
system_prompt = "### System:\nYou are an AI assistant that follows instruction extremely well. Help as much as you can.\n\n"

#generate text steps
instruction = "Tell me about Orcas."
prompt = f"{system_prompt}### User: {instruction}\n\n### Assistant:\n"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=4096)

print(tokenizer.decode(output[0], skip_special_tokens=True))

```

<br>

#### Limitations & Biases:

While this model aims for accuracy, it can occasionally produce inaccurate or misleading results. 

Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content. 

Exercise caution and cross-check information when necessary.

<br>

### Citiation:

Please kindly cite using the following BibTeX:

```
@misc{orca_mini_v3_70b,
  author = {Pankaj Mathur},
  title = {orca_mini_v3_70b: An Orca Style Llama2-70b model},
  month = {august},
  year = {2023},
  publisher = {HuggingFace},
  journal = {HuggingFace repository},
  howpublished = {\url{https://https://huggingface.co/psmathur/orca_mini_v3_70b},
}
```

```
@misc{mukherjee2023orca,
      title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4}, 
      author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
      year={2023},
      eprint={2306.02707},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

```
@software{touvron2023llama2,
  title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
  author={Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava,
 Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith,
Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu , Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom},
  year={2023}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_psmathur__orca_mini_v3_70b)

| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | 64.9   |
| ARC (25-shot)         | 71.25          |
| HellaSwag (10-shot)   | 87.85    |
| MMLU (5-shot)         | 70.18         |
| TruthfulQA (0-shot)   | 61.27   |
| Winogrande (5-shot)   | 82.72   |
| GSM8K (5-shot)        | 40.86        |
| DROP (3-shot)         | 40.17         |

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_psmathur__orca_mini_v3_70b)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |69.02|
|AI2 Reasoning Challenge (25-Shot)|71.25|
|HellaSwag (10-Shot)              |87.85|
|MMLU (5-Shot)                    |70.18|
|TruthfulQA (0-shot)              |61.27|
|Winogrande (5-shot)              |82.72|
|GSM8k (5-shot)                   |40.86|