paolinox/mobilevit-FT-food101
Browse files
README.md
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: apple/mobilevitv2-1.0-imagenet1k-256
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- food101
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: mobilevit-finetuned-food101
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: food101
|
18 |
+
type: food101
|
19 |
+
config: default
|
20 |
+
split: train[:5000]
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.874
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# mobilevit-finetuned-food101
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [apple/mobilevitv2-1.0-imagenet1k-256](https://huggingface.co/apple/mobilevitv2-1.0-imagenet1k-256) on the food101 dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.4191
|
36 |
+
- Accuracy: 0.874
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 32
|
57 |
+
- eval_batch_size: 32
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 4
|
60 |
+
- total_train_batch_size: 128
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 30
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 1.9487 | 0.98 | 23 | 1.9476 | 0.151 |
|
71 |
+
| 1.9273 | 2.0 | 47 | 1.9070 | 0.24 |
|
72 |
+
| 1.8561 | 2.98 | 70 | 1.8401 | 0.448 |
|
73 |
+
| 1.7788 | 4.0 | 94 | 1.7301 | 0.612 |
|
74 |
+
| 1.6586 | 4.98 | 117 | 1.5863 | 0.676 |
|
75 |
+
| 1.4603 | 6.0 | 141 | 1.4199 | 0.72 |
|
76 |
+
| 1.3027 | 6.98 | 164 | 1.2215 | 0.734 |
|
77 |
+
| 1.1717 | 8.0 | 188 | 1.0581 | 0.759 |
|
78 |
+
| 0.9601 | 8.98 | 211 | 0.9013 | 0.769 |
|
79 |
+
| 0.8482 | 10.0 | 235 | 0.7866 | 0.791 |
|
80 |
+
| 0.7276 | 10.98 | 258 | 0.7112 | 0.803 |
|
81 |
+
| 0.6449 | 12.0 | 282 | 0.6132 | 0.835 |
|
82 |
+
| 0.6279 | 12.98 | 305 | 0.6069 | 0.83 |
|
83 |
+
| 0.5982 | 14.0 | 329 | 0.5637 | 0.832 |
|
84 |
+
| 0.5766 | 14.98 | 352 | 0.5149 | 0.857 |
|
85 |
+
| 0.5345 | 16.0 | 376 | 0.5392 | 0.837 |
|
86 |
+
| 0.494 | 16.98 | 399 | 0.5017 | 0.848 |
|
87 |
+
| 0.4953 | 18.0 | 423 | 0.5002 | 0.846 |
|
88 |
+
| 0.5118 | 18.98 | 446 | 0.4782 | 0.856 |
|
89 |
+
| 0.4708 | 20.0 | 470 | 0.4898 | 0.858 |
|
90 |
+
| 0.4774 | 20.98 | 493 | 0.4769 | 0.851 |
|
91 |
+
| 0.4848 | 22.0 | 517 | 0.4665 | 0.841 |
|
92 |
+
| 0.4533 | 22.98 | 540 | 0.4890 | 0.837 |
|
93 |
+
| 0.4449 | 24.0 | 564 | 0.4558 | 0.857 |
|
94 |
+
| 0.4205 | 24.98 | 587 | 0.4767 | 0.857 |
|
95 |
+
| 0.4417 | 26.0 | 611 | 0.4476 | 0.853 |
|
96 |
+
| 0.4333 | 26.98 | 634 | 0.4853 | 0.834 |
|
97 |
+
| 0.4545 | 28.0 | 658 | 0.4573 | 0.847 |
|
98 |
+
| 0.4489 | 28.98 | 681 | 0.4659 | 0.845 |
|
99 |
+
| 0.4172 | 29.36 | 690 | 0.4191 | 0.874 |
|
100 |
+
|
101 |
+
|
102 |
+
### Framework versions
|
103 |
+
|
104 |
+
- Transformers 4.35.2
|
105 |
+
- Pytorch 2.1.0+cu118
|
106 |
+
- Datasets 2.15.0
|
107 |
+
- Tokenizers 0.15.0
|
config.json
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "apple/mobilevitv2-1.0-imagenet1k-256",
|
3 |
+
"architectures": [
|
4 |
+
"MobileViTV2ForImageClassification"
|
5 |
+
],
|
6 |
+
"aspp_dropout_prob": 0.1,
|
7 |
+
"aspp_out_channels": 512,
|
8 |
+
"atrous_rates": [
|
9 |
+
6,
|
10 |
+
12,
|
11 |
+
18
|
12 |
+
],
|
13 |
+
"attn_dropout": 0.0,
|
14 |
+
"base_attn_unit_dims": [
|
15 |
+
128,
|
16 |
+
192,
|
17 |
+
256
|
18 |
+
],
|
19 |
+
"classifier_dropout_prob": 0.1,
|
20 |
+
"conv_kernel_size": 3,
|
21 |
+
"expand_ratio": 2.0,
|
22 |
+
"ffn_dropout": 0.0,
|
23 |
+
"ffn_multiplier": 2,
|
24 |
+
"hidden_act": "swish",
|
25 |
+
"id2label": {
|
26 |
+
"0": "beignets",
|
27 |
+
"1": "bruschetta",
|
28 |
+
"2": "chicken_wings",
|
29 |
+
"3": "hamburger",
|
30 |
+
"4": "pork_chop",
|
31 |
+
"5": "prime_rib",
|
32 |
+
"6": "ramen"
|
33 |
+
},
|
34 |
+
"image_size": 256,
|
35 |
+
"initializer_range": 0.02,
|
36 |
+
"label2id": {
|
37 |
+
"beignets": 0,
|
38 |
+
"bruschetta": 1,
|
39 |
+
"chicken_wings": 2,
|
40 |
+
"hamburger": 3,
|
41 |
+
"pork_chop": 4,
|
42 |
+
"prime_rib": 5,
|
43 |
+
"ramen": 6
|
44 |
+
},
|
45 |
+
"layer_norm_eps": 1e-05,
|
46 |
+
"mlp_ratio": 2.0,
|
47 |
+
"model_type": "mobilevitv2",
|
48 |
+
"n_attn_blocks": [
|
49 |
+
2,
|
50 |
+
4,
|
51 |
+
3
|
52 |
+
],
|
53 |
+
"num_channels": 3,
|
54 |
+
"output_stride": 32,
|
55 |
+
"patch_size": 2,
|
56 |
+
"problem_type": "single_label_classification",
|
57 |
+
"semantic_loss_ignore_index": 255,
|
58 |
+
"torch_dtype": "float32",
|
59 |
+
"transformers_version": "4.35.2",
|
60 |
+
"width_multiplier": 1.0
|
61 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:250016110cd75ef795dada56345d97dcc5bacffb2777a16883391b5647bdc64a
|
3 |
+
size 17669344
|
preprocessor_config.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": {
|
3 |
+
"height": 256,
|
4 |
+
"width": 256
|
5 |
+
},
|
6 |
+
"do_center_crop": true,
|
7 |
+
"do_flip_channel_order": true,
|
8 |
+
"do_rescale": true,
|
9 |
+
"do_resize": true,
|
10 |
+
"image_processor_type": "MobileViTImageProcessor",
|
11 |
+
"resample": 2,
|
12 |
+
"rescale_factor": 0.00392156862745098,
|
13 |
+
"size": {
|
14 |
+
"shortest_edge": 288
|
15 |
+
},
|
16 |
+
"use_square_size": false
|
17 |
+
}
|
runs/Nov28_11-52-58_f71d5d222dbc/events.out.tfevents.1701172379.f71d5d222dbc.15295.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:046766e71836da40311411a26bee2fbabb18169dab91ed48ae53e5dc298c8a53
|
3 |
+
size 88
|
runs/Nov28_11-54-32_f71d5d222dbc/events.out.tfevents.1701172483.f71d5d222dbc.16548.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:286caa6dbd5dc6d7fc331b6df8653ba9b5677adaa4c9f7731b9c4c44c73d1ab2
|
3 |
+
size 25601
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0dc3836ce49174d52c62e09cce157e36d8ec85d6f9b9d126bd00187ed165ad09
|
3 |
+
size 4600
|