Papers
arxiv:2401.08500

Code Generation with AlphaCodium: From Prompt Engineering to Flow Engineering

Published on Jan 16, 2024
Authors:
,

Abstract

Code generation problems differ from common natural language problems - they require matching the exact syntax of the target language, identifying happy paths and edge cases, paying attention to numerous small details in the problem spec, and addressing other code-specific issues and requirements. Hence, many of the optimizations and tricks that have been successful in natural language generation may not be effective for code tasks. In this work, we propose a new approach to code generation by LLMs, which we call AlphaCodium - a test-based, multi-stage, code-oriented iterative flow, that improves the performances of LLMs on code problems. We tested AlphaCodium on a challenging code generation dataset called CodeContests, which includes competitive programming problems from platforms such as Codeforces. The proposed flow consistently and significantly improves results. On the validation set, for example, GPT-4 accuracy (pass@5) increased from 19% with a single well-designed direct prompt to 44% with the AlphaCodium flow. Many of the principles and best practices acquired in this work, we believe, are broadly applicable to general code generation tasks. Full implementation is available at: https://github.com/Codium-ai/AlphaCodium

Community

Enhancing Code Generation: AlphaCodium’s Multi-Stage Approach Explained

Links 🔗:

👉 Subscribe: https://www.youtube.com/@Arxflix
👉 Twitter: https://x.com/arxflix
👉 LMNT (Partner): https://lmnt.com/

By Arxflix
9t4iCUHx_400x400-1.jpg

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2401.08500 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2401.08500 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2401.08500 in a Space README.md to link it from this page.

Collections including this paper 3