PIVOT: Iterative Visual Prompting Elicits Actionable Knowledge for VLMs
Abstract
Vision language models (VLMs) have shown impressive capabilities across a variety of tasks, from logical reasoning to visual understanding. This opens the door to richer interaction with the world, for example robotic control. However, VLMs produce only textual outputs, while robotic control and other spatial tasks require outputting continuous coordinates, actions, or trajectories. How can we enable VLMs to handle such settings without fine-tuning on task-specific data? In this paper, we propose a novel visual prompting approach for VLMs that we call Prompting with Iterative Visual Optimization (PIVOT), which casts tasks as iterative visual question answering. In each iteration, the image is annotated with a visual representation of proposals that the VLM can refer to (e.g., candidate robot actions, localizations, or trajectories). The VLM then selects the best ones for the task. These proposals are iteratively refined, allowing the VLM to eventually zero in on the best available answer. We investigate PIVOT on real-world robotic navigation, real-world manipulation from images, instruction following in simulation, and additional spatial inference tasks such as localization. We find, perhaps surprisingly, that our approach enables zero-shot control of robotic systems without any robot training data, navigation in a variety of environments, and other capabilities. Although current performance is far from perfect, our work highlights potentials and limitations of this new regime and shows a promising approach for Internet-Scale VLMs in robotic and spatial reasoning domains. Website: pivot-prompt.github.io and HuggingFace: https://huggingface.co/spaces/pivot-prompt/pivot-prompt-demo.
Community
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
The following papers were recommended by the Semantic Scholar API
- SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning Capabilities (2024)
- MapGPT: Map-Guided Prompting for Unified Vision-and-Language Navigation (2024)
- Towards Unified Interactive Visual Grounding in The Wild (2024)
- DriveLM: Driving with Graph Visual Question Answering (2023)
- Towards Truly Zero-shot Compositional Visual Reasoning with LLMs as Programmers (2024)
Please give a thumbs up to this comment if you found it helpful!
If you want recommendations for any Paper on Hugging Face checkout this Space
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment:
@librarian-bot
recommend
PIVOT: Game-Changing Visual Prompts for Zero-Shot Robotics!
Links ๐:
๐ Subscribe: https://www.youtube.com/@Arxflix
๐ Twitter: https://x.com/arxflix
๐ LMNT (Partner): https://lmnt.com/
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper