Papers
arxiv:2403.12037

MineDreamer: Learning to Follow Instructions via Chain-of-Imagination for Simulated-World Control

Published on Mar 18, 2024
Authors:
,
,
,
,
,

Abstract

It is a long-lasting goal to design a generalist-embodied agent that can follow diverse instructions in human-like ways. However, existing approaches often fail to steadily follow instructions due to difficulties in understanding abstract and sequential natural language instructions. To this end, we introduce MineDreamer, an open-ended embodied agent built upon the challenging Minecraft simulator with an innovative paradigm that enhances instruction-following ability in low-level control signal generation. Specifically, MineDreamer is developed on top of recent advances in Multimodal Large Language Models (MLLMs) and diffusion models, and we employ a Chain-of-Imagination (CoI) mechanism to envision the step-by-step process of executing instructions and translating imaginations into more precise visual prompts tailored to the current state; subsequently, the agent generates keyboard-and-mouse actions to efficiently achieve these imaginations, steadily following the instructions at each step. Extensive experiments demonstrate that MineDreamer follows single and multi-step instructions steadily, significantly outperforming the best generalist agent baseline and nearly doubling its performance. Moreover, qualitative analysis of the agent's imaginative ability reveals its generalization and comprehension of the open world.

Community

Sign up or log in to comment

Models citing this paper 3

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2403.12037 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.