Papers
arxiv:2404.03653

CoMat: Aligning Text-to-Image Diffusion Model with Image-to-Text Concept Matching

Published on Apr 4, 2024
ยท Submitted by akhaliq on Apr 5, 2024
Authors:
,
,
,
,
,

Abstract

Diffusion models have demonstrated great success in the field of text-to-image generation. However, alleviating the misalignment between the text prompts and images is still challenging. The root reason behind the misalignment has not been extensively investigated. We observe that the misalignment is caused by inadequate token attention activation. We further attribute this phenomenon to the diffusion model's insufficient condition utilization, which is caused by its training paradigm. To address the issue, we propose CoMat, an end-to-end diffusion model fine-tuning strategy with an image-to-text concept matching mechanism. We leverage an image captioning model to measure image-to-text alignment and guide the diffusion model to revisit ignored tokens. A novel attribute concentration module is also proposed to address the attribute binding problem. Without any image or human preference data, we use only 20K text prompts to fine-tune SDXL to obtain CoMat-SDXL. Extensive experiments show that CoMat-SDXL significantly outperforms the baseline model SDXL in two text-to-image alignment benchmarks and achieves start-of-the-art performance.

Community

This one looks exciting. I certainly hope that they keep to "release training code in April" as stated on the project site:

https://github.com/CaraJ7/CoMat

ยท
Paper author

Thanks for your interest!
We are currently organizing the training code. Hopefully, the code will be released within April as stated.

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Solving Misalignment in Text-to-Image AI: CoMat Explained!

Links ๐Ÿ”—:

๐Ÿ‘‰ Subscribe: https://www.youtube.com/@Arxflix
๐Ÿ‘‰ Twitter: https://x.com/arxflix
๐Ÿ‘‰ LMNT (Partner): https://lmnt.com/

By Arxflix
9t4iCUHx_400x400-1.jpg

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2404.03653 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2404.03653 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2404.03653 in a Space README.md to link it from this page.

Collections including this paper 17