Papers
arxiv:2404.04319

SpatialTracker: Tracking Any 2D Pixels in 3D Space

Published on Apr 5, 2024
Β· Submitted by akhaliq on Apr 9, 2024
Authors:
,
,
,
,
,
,

Abstract

Recovering dense and long-range pixel motion in videos is a challenging problem. Part of the difficulty arises from the 3D-to-2D projection process, leading to occlusions and discontinuities in the 2D motion domain. While 2D motion can be intricate, we posit that the underlying 3D motion can often be simple and low-dimensional. In this work, we propose to estimate point trajectories in 3D space to mitigate the issues caused by image projection. Our method, named SpatialTracker, lifts 2D pixels to 3D using monocular depth estimators, represents the 3D content of each frame efficiently using a triplane representation, and performs iterative updates using a transformer to estimate 3D trajectories. Tracking in 3D allows us to leverage as-rigid-as-possible (ARAP) constraints while simultaneously learning a rigidity embedding that clusters pixels into different rigid parts. Extensive evaluation shows that our approach achieves state-of-the-art tracking performance both qualitatively and quantitatively, particularly in challenging scenarios such as out-of-plane rotation.

Community

Tracking 2D Pixels in 3D Space: The Future of Motion Estimation

Links πŸ”—:

πŸ‘‰ Subscribe: https://www.youtube.com/@Arxflix
πŸ‘‰ Twitter: https://x.com/arxflix
πŸ‘‰ LMNT (Partner): https://lmnt.com/

By Arxflix
9t4iCUHx_400x400-1.jpg

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2404.04319 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2404.04319 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2404.04319 in a Space README.md to link it from this page.

Collections including this paper 7