Papers
arxiv:2404.18796

Replacing Judges with Juries: Evaluating LLM Generations with a Panel of Diverse Models

Published on Apr 29, 2024
· Submitted by akhaliq on Apr 30, 2024
#1 Paper of the day

Abstract

As Large Language Models (LLMs) have become more advanced, they have outpaced our abilities to accurately evaluate their quality. Not only is finding data to adequately probe particular model properties difficult, but evaluating the correctness of a model's freeform generation alone is a challenge. To address this, many evaluations now rely on using LLMs themselves as judges to score the quality of outputs from other LLMs. Evaluations most commonly use a single large model like GPT4. While this method has grown in popularity, it is costly, has been shown to introduce intramodel bias, and in this work, we find that very large models are often unnecessary. We propose instead to evaluate models using a Panel of LLm evaluators (PoLL). Across three distinct judge settings and spanning six different datasets, we find that using a PoLL composed of a larger number of smaller models outperforms a single large judge, exhibits less intra-model bias due to its composition of disjoint model families, and does so while being over seven times less expensive.

Community

@librarian-bot recommend

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Did the authors release the human annotation data conducted at Cohere?

Sign up or log in to comment

Models citing this paper 9

Browse 9 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2404.18796 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2404.18796 in a Space README.md to link it from this page.

Collections including this paper 26