Papers
arxiv:2406.14596

ICAL: Continual Learning of Multimodal Agents by Transforming Trajectories into Actionable Insights

Published on Jun 20, 2024
· Submitted by gsarch on Jun 24, 2024
Authors:
,
,
,

Abstract

Large-scale generative language and vision-language models (LLMs and VLMs) excel in few-shot in-context learning for decision making and instruction following. However, they require high-quality exemplar demonstrations to be included in their context window. In this work, we ask: Can LLMs and VLMs generate their own prompt examples from generic, sub-optimal demonstrations? We propose In-Context Abstraction Learning (ICAL), a method that builds a memory of multimodal experience insights from sub-optimal demonstrations and human feedback. Given a noisy demonstration in a new domain, VLMs abstract the trajectory into a general program by fixing inefficient actions and annotating cognitive abstractions: task relationships, object state changes, temporal subgoals, and task construals. These abstractions are refined and adapted interactively through human feedback while the agent attempts to execute the trajectory in a similar environment. The resulting abstractions, when used as exemplars in the prompt, significantly improve decision-making in retrieval-augmented LLM and VLM agents. Our ICAL agent surpasses the state-of-the-art in dialogue-based instruction following in TEACh, multimodal web agents in VisualWebArena, and action anticipation in Ego4D. In TEACh, we achieve a 12.6% improvement in goal-condition success. In VisualWebArena, our task success rate improves over the SOTA from 14.3% to 22.7%. In Ego4D action forecasting, we improve over few-shot GPT-4V and remain competitive with supervised models. We show finetuning our retrieval-augmented in-context agent yields additional improvements. Our approach significantly reduces reliance on expert-crafted examples and consistently outperforms in-context learning from action plans that lack such insights.

Community

Paper author Paper submitter

Check out our project page for videos and code! http://ical-learning.github.io/

Kudos @gsarch and team. I've featured this paper in my AI research newsletter https://www.aitidbits.ai/p/july-4th-2024#:~:text=Multimodal-,CMU,-and%20Google%20propose

Looking forward to more novel papers and methods.

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2406.14596 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2406.14596 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2406.14596 in a Space README.md to link it from this page.

Collections including this paper 4