Papers
arxiv:2407.10167

Key-Point-Driven Mathematical Reasoning Distillation of Large Language Model

Published on Jul 14, 2024
Authors:
,
,
,

Abstract

Large Language Models (LLMs) have demonstrated exceptional proficiency in mathematical reasoning tasks due to their extensive parameter counts and training on vast datasets. Despite these capabilities, deploying LLMs is hindered by their computational demands. Distilling LLM mathematical reasoning into Smaller Language Models (SLMs) has emerged as a solution to this challenge, although these smaller models often suffer from errors in calculation and semantic understanding. Prior work has proposed Program-of-Thought Distillation (PoTD) to avoid calculation error. To further address semantic understanding errors, we propose Key-Point-Driven Mathematical Reasoning Distillation (KPDD). KPDD enhances the reasoning performance of SLMs by breaking down the problem-solving process into three stages: Core Question Extraction, Problem-Solving Information Extraction, and Step-by-Step Solution. This method is further divided into KPDD-CoT, which generates Chain-of-Thought rationales, and KPDD-PoT, which creates Program-of-Thought rationales. The experiment results show that KPDD-CoT significantly improves reasoning abilities, while KPDD-PoT achieves state-of-the-art performance in mathematical reasoning tasks. Our approach effectively mitigates misunderstanding errors, advancing the deployment of efficient and capable SLMs.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2407.10167 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2407.10167 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2407.10167 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.