Papers
arxiv:2407.19914

Sentiment Analysis of Lithuanian Online Reviews Using Large Language Models

Published on Jul 29, 2024
· Submitted by IAMJB on Jul 30, 2024
Authors:
,

Abstract

Sentiment analysis is a widely researched area within Natural Language Processing (NLP), attracting significant interest due to the advent of automated solutions. Despite this, the task remains challenging because of the inherent complexity of languages and the subjective nature of sentiments. It is even more challenging for less-studied and less-resourced languages such as Lithuanian. Our review of existing Lithuanian NLP research reveals that traditional machine learning methods and classification algorithms have limited effectiveness for the task. In this work, we address sentiment analysis of Lithuanian five-star-based online reviews from multiple domains that we collect and clean. We apply transformer models to this task for the first time, exploring the capabilities of pre-trained multilingual Large Language Models (LLMs), specifically focusing on fine-tuning BERT and T5 models. Given the inherent difficulty of the task, the fine-tuned models perform quite well, especially when the sentiments themselves are less ambiguous: 80.74% and 89.61% testing recognition accuracy of the most popular one- and five-star reviews respectively. They significantly outperform current commercial state-of-the-art general-purpose LLM GPT-4. We openly share our fine-tuned LLMs online.

Community

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2407.19914 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2407.19914 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2407.19914 in a Space README.md to link it from this page.

Collections including this paper 1