Papers
arxiv:2408.00441

Focus, Distinguish, and Prompt: Unleashing CLIP for Efficient and Flexible Scene Text Retrieval

Published on Aug 1, 2024
Authors:
,
,
,
,
,
,
,

Abstract

Scene text retrieval aims to find all images containing the query text from an image gallery. Current efforts tend to adopt an Optical Character Recognition (OCR) pipeline, which requires complicated text detection and/or recognition processes, resulting in inefficient and inflexible retrieval. Different from them, in this work we propose to explore the intrinsic potential of Contrastive Language-Image Pre-training (CLIP) for OCR-free scene text retrieval. Through empirical analysis, we observe that the main challenges of CLIP as a text retriever are: 1) limited text perceptual scale, and 2) entangled visual-semantic concepts. To this end, a novel model termed FDP (Focus, Distinguish, and Prompt) is developed. FDP first focuses on scene text via shifting the attention to the text area and probing the hidden text knowledge, and then divides the query text into content word and function word for processing, in which a semantic-aware prompting scheme and a distracted queries assistance module are utilized. Extensive experiments show that FDP significantly enhances the inference speed while achieving better or competitive retrieval accuracy compared to existing methods. Notably, on the IIIT-STR benchmark, FDP surpasses the state-of-the-art model by 4.37% with a 4 times faster speed. Furthermore, additional experiments under phrase-level and attribute-aware scene text retrieval settings validate FDP's particular advantages in handling diverse forms of query text. The source code will be publicly available at https://github.com/Gyann-z/FDP.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2408.00441 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2408.00441 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2408.00441 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.