Papers
arxiv:2409.08345

SIG: A Synthetic Identity Generation Pipeline for Generating Evaluation Datasets for Face Recognition

Published on Sep 12, 2024
Authors:
,

Abstract

As Artificial Intelligence applications expand, the evaluation of models faces heightened scrutiny. Ensuring public readiness requires evaluation datasets, which differ from training data by being disjoint and ethically sourced in compliance with privacy regulations. The performance and fairness of face recognition systems depend significantly on the quality and representativeness of these evaluation datasets. This data is sometimes scraped from the internet without user's consent, causing ethical concerns that can prohibit its use without proper releases. In rare cases, data is collected in a controlled environment with consent, however, this process is time-consuming, expensive, and logistically difficult to execute. This creates a barrier for those unable to conjure the immense resources required to gather ethically sourced evaluation datasets. To address these challenges, we introduce the Synthetic Identity Generation pipeline, or SIG, that allows for the targeted creation of ethical, balanced datasets for face recognition evaluation. Our proposed and demonstrated pipeline generates high-quality images of synthetic identities with controllable pose, facial features, and demographic attributes, such as race, gender, and age. We also release an open-source evaluation dataset named ControlFace10k, consisting of 10,008 face images of 3,336 unique synthetic identities balanced across race, gender, and age, generated using the proposed SIG pipeline. We analyze ControlFace10k along with a non-synthetic BUPT dataset using state-of-the-art face recognition algorithms to demonstrate its effectiveness as an evaluation tool. This analysis highlights the dataset's characteristics and its utility in assessing algorithmic bias across different demographic groups.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2409.08345 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2409.08345 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.