Papers
arxiv:2409.09741

Benchmarking LLMs in Political Content Text-Annotation: Proof-of-Concept with Toxicity and Incivility Data

Published on Sep 15, 2024

Abstract

This article benchmarked the ability of OpenAI's GPTs and a number of open-source LLMs to perform annotation tasks on political content. We used a novel protest event dataset comprising more than three million digital interactions and created a gold standard that includes ground-truth labels annotated by human coders about toxicity and incivility on social media. We included in our benchmark Google's Perspective algorithm, which, along with GPTs, was employed throughout their respective APIs while the open-source LLMs were deployed locally. The findings show that Perspective API using a laxer threshold, GPT-4o, and Nous Hermes 2 Mixtral outperform other LLM's zero-shot classification annotations. In addition, Nous Hermes 2 and Mistral OpenOrca, with a smaller number of parameters, are able to perform the task with high performance, being attractive options that could offer good trade-offs between performance, implementing costs and computing time. Ancillary findings using experiments setting different temperature levels show that although GPTs tend to show not only excellent computing time but also overall good levels of reliability, only open-source LLMs ensure full reproducibility in the annotation.

Community

Sign up or log in to comment

Models citing this paper 3

Datasets citing this paper 2

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2409.09741 in a Space README.md to link it from this page.

Collections including this paper 1