File size: 1,853 Bytes
db9328f 60be62e db9328f f49e3ec 60be62e f49e3ec db9328f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
from typing import Dict, List, Any
from transformers import Blip2Processor, Blip2ForConditionalGeneration
from PIL import Image
from io import BytesIO
import torch
import os
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class EndpointHandler:
def __init__(self, path=""):
# load the optimized model
self.processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
self.model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", device_map="auto")
self.model.eval()
self.model = self.model.to("cuda")
def __call__(self, data: Any) -> Dict[str, Any]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`dict`:. The object returned should be a dict of one list like {"captions": ["A hugging face at the office"]} containing :
- "caption": A string corresponding to the generated caption.
"""
inputs = data.pop("inputs", data)
parameters = data.pop("parameters", {})
raw_images = inputs
inputs = self.processor(inputs, return_tensors="pt").to("cuda")
processed_image = self.processor(images=raw_images, return_tensors="pt").to(device)
out = self.model.generate(**processed_image)
# processed_image["pixel_values"] = processed_image["pixel_values"].to(device)
# processed_image = {**processed_image, **parameters}
# with torch.no_grad():
# out = self.model.generate(
# **processed_image
# )
captions = self.processor.decode(out[0], skip_special_tokens=True)
# postprocess the prediction
return {"captions": captions} |