fasttext-jp-embedding / mecab_tokenizer.py
paulhindemith's picture
commit files to HF hub
9841823
raw
history blame
2.43 kB
from __future__ import annotations
from typing import NamedTuple
import MeCab
from transformers import PreTrainedTokenizer
class MeCabResult(NamedTuple):
"""MeCab解析結果の型
"""
hyosokei: str
hinshi: str
class MeCabTokenizer(PreTrainedTokenizer):
def __init__(self,
hinshi: list[str] | None = None,
mecab_dicdir: str | None = None,
**kwargs):
"""初期化処理
Args:
hinshi (list[str] | None): 抽出する品詞
mecab_dicdir (str | None, optional): dicrcのあるディレクトリ
"""
self.target_hinshi = hinshi
if mecab_dicdir is not None:
self.mecab = MeCab.Tagger(
f"-d {mecab_dicdir} -O '' -F '%m,%f[0]\n'")
else:
self.mecab = MeCab.Tagger("-O '' -F '%m,%f[0]\n'")
super().__init__(**kwargs)
def set_dicdir(self, mecab_dicdir: str):
self.mecab = MeCab.Tagger(f"-d {mecab_dicdir} -O '' -F '%m,%f[0]\n'")
def _tokenize(self, text: str) -> list[str]:
"""文章から特定の品詞の単語を返します。
Args:
text (str): 文章
Returns:
list[str]: 特定の品詞の単語
"""
out = []
# Mecabで分析します。
result_words = self.mecab_analyze(text)
for result_word in result_words:
# 最初と最後は空文字
if result_word.hyosokei == "":
continue
if self.target_hinshi is not None:
if result_word.hinshi in self.target_hinshi:
# 特定の品詞のみ返します。
out.append(result_word.hyosokei)
else:
continue
else:
out.append(result_word.hyosokei)
return out
def mecab_analyze(self, text: str) -> list[MeCabResult]:
"""文章をMecabで分析します。
Args:
text (str): 文章
Returns:
list[MeCabResult]: MeCabの解析結果
"""
nodes = self.mecab.parse(text).split("\n")
out = []
for node in nodes:
args = node.split(",")
if args[0] in ["EOS", ""]:
continue
mecab_result = MeCabResult(args[0], args[1])
out.append(mecab_result)
return out