yuekai commited on
Commit
a9dc703
·
1 Parent(s): 8bde216

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/lustre/fsw/sa/yuekaiz/model/Llama-2-70b-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 8192,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 28672,
12
+ "max_length": 4096,
13
+ "max_position_embeddings": 2048,
14
+ "model_type": "llama",
15
+ "num_attention_heads": 64,
16
+ "num_hidden_layers": 80,
17
+ "num_key_value_heads": 8,
18
+ "pad_token_id": 0,
19
+ "pretraining_tp": 1,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_scaling": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "float16",
24
+ "transformers_version": "4.31.0",
25
+ "use_cache": false,
26
+ "vocab_size": 32000
27
+ }
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 32000,
6
+ "temperature": 0.9,
7
+ "top_p": 0.6,
8
+ "transformers_version": "4.31.0"
9
+ }
pytorch_model-00001-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11d9ebf240f0a17507e469e616cada85a51d22ffcf37e4b9dc257772ba832310
3
+ size 9852604085
pytorch_model-00002-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2441ff773a6f8e7e107beae8728b9a4a960fe99f783f0cdf41178aa12371df1
3
+ size 9798111737
pytorch_model-00003-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b857e64505d258b54f253b50de47eb534b93ca76a71c5290806cbfb631ee8b38
3
+ size 9965882453
pytorch_model-00004-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b480ded19be54bc5a6bb9638b27f64164a5e984ac1d17569610c189273ae06a2
3
+ size 9798078185
pytorch_model-00005-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1627503d226573f52f0750fef7c1557286390cb7b0a3d3c28e94ca9aee6a26aa
3
+ size 9798111713
pytorch_model-00006-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7093abe7608564db74b89481535c30643d8a8efe6b9759ef6968b4d87e856d49
3
+ size 9798111737
pytorch_model-00007-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c291f54e23638078c493fc689d040a491c6a1e12758624bbdcb28d256da275b2
3
+ size 9965882453
pytorch_model-00008-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a67238a8d49d87134f38349fd1a3372126e4af410ae7c702472ae86ae3d26f3
3
+ size 9798078185
pytorch_model-00009-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:473c14e016f844af4520c7383c6fde1006efc1ed2a1f55681a9c0571ed88ebfe
3
+ size 9798111713
pytorch_model-00010-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68b77f3225bf6b7d5c158b4d368ff50f8b502724a2ff851a37f5cc793a1170e8
3
+ size 9798111737
pytorch_model-00011-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2330b188516a0d77d05d65e99c71d647bb9e8b5de8c2d442086a534c6243a7e
3
+ size 9965882453
pytorch_model-00012-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cda0194c611700cfadbdbc94c8ef550392d2f6efe9ee26b79d36619334a76328
3
+ size 9798078185
pytorch_model-00013-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e542b20c66a8d4e3569f20a9a13791a225933c340a0c45b965d56fde5beb6cc
3
+ size 9798111713
pytorch_model-00014-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fb504aa5d594ec499f055603d6ec0f5aa7edd7bd2d0c9bc7c75de6dabc1fbd0
3
+ size 9496136705
pytorch_model-00015-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed355b6e1a8386981770dbf5c6d6b04b8115cfaf769b85bcd15ba4e7f21a1ac3
3
+ size 524288938
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,810 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 137953306624
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00015-of-00015.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00015.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00015.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00015.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00015.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00015.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00015.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00015.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00015.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00015.bin",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00015.bin",
17
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00015.bin",
18
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00015.bin",
19
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00015.bin",
20
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00015.bin",
21
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00015.bin",
22
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00015.bin",
23
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00015.bin",
24
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00015.bin",
25
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00015.bin",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00015.bin",
27
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00015.bin",
28
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00015.bin",
29
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00015.bin",
30
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00002-of-00015.bin",
31
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00015.bin",
32
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00015.bin",
33
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00015.bin",
34
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00002-of-00015.bin",
35
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00015.bin",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00015.bin",
37
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00015.bin",
38
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00003-of-00015.bin",
39
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00003-of-00015.bin",
40
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00003-of-00015.bin",
41
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00003-of-00015.bin",
42
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00003-of-00015.bin",
43
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00015.bin",
44
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00015.bin",
45
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00015.bin",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00015.bin",
47
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00015.bin",
48
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00003-of-00015.bin",
49
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00003-of-00015.bin",
50
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00003-of-00015.bin",
51
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00003-of-00015.bin",
52
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00003-of-00015.bin",
53
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00003-of-00015.bin",
54
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00003-of-00015.bin",
55
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00003-of-00015.bin",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00015.bin",
57
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00003-of-00015.bin",
58
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00003-of-00015.bin",
59
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00003-of-00015.bin",
60
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00003-of-00015.bin",
61
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00003-of-00015.bin",
62
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00003-of-00015.bin",
63
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00003-of-00015.bin",
64
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00003-of-00015.bin",
65
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00003-of-00015.bin",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00015.bin",
67
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00003-of-00015.bin",
68
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00003-of-00015.bin",
69
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00003-of-00015.bin",
70
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00003-of-00015.bin",
71
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00003-of-00015.bin",
72
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00003-of-00015.bin",
73
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00003-of-00015.bin",
74
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00003-of-00015.bin",
75
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00003-of-00015.bin",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00015.bin",
77
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00003-of-00015.bin",
78
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00003-of-00015.bin",
79
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00003-of-00015.bin",
80
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00003-of-00015.bin",
81
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00003-of-00015.bin",
82
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00003-of-00015.bin",
83
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00003-of-00015.bin",
84
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00003-of-00015.bin",
85
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00003-of-00015.bin",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00015.bin",
87
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00003-of-00015.bin",
88
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00003-of-00015.bin",
89
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00003-of-00015.bin",
90
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00003-of-00015.bin",
91
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00003-of-00015.bin",
92
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00003-of-00015.bin",
93
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00003-of-00015.bin",
94
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00003-of-00015.bin",
95
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00003-of-00015.bin",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00015.bin",
97
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00003-of-00015.bin",
98
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00004-of-00015.bin",
99
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00004-of-00015.bin",
100
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00004-of-00015.bin",
101
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00004-of-00015.bin",
102
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00004-of-00015.bin",
103
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00004-of-00015.bin",
104
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00004-of-00015.bin",
105
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00004-of-00015.bin",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00015.bin",
107
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00004-of-00015.bin",
108
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00004-of-00015.bin",
109
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00004-of-00015.bin",
110
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00004-of-00015.bin",
111
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00004-of-00015.bin",
112
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00004-of-00015.bin",
113
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00004-of-00015.bin",
114
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00004-of-00015.bin",
115
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00004-of-00015.bin",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00015.bin",
117
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00004-of-00015.bin",
118
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00004-of-00015.bin",
119
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00004-of-00015.bin",
120
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00004-of-00015.bin",
121
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00004-of-00015.bin",
122
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00004-of-00015.bin",
123
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00004-of-00015.bin",
124
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00004-of-00015.bin",
125
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00004-of-00015.bin",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00015.bin",
127
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00004-of-00015.bin",
128
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00015.bin",
129
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00015.bin",
130
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00015.bin",
131
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00015.bin",
132
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00015.bin",
133
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00015.bin",
134
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00015.bin",
135
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00015.bin",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00015.bin",
137
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00015.bin",
138
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00004-of-00015.bin",
139
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00004-of-00015.bin",
140
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00004-of-00015.bin",
141
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00004-of-00015.bin",
142
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00004-of-00015.bin",
143
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00004-of-00015.bin",
144
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00004-of-00015.bin",
145
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00004-of-00015.bin",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00015.bin",
147
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00004-of-00015.bin",
148
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00004-of-00015.bin",
149
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00004-of-00015.bin",
150
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00004-of-00015.bin",
151
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00004-of-00015.bin",
152
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00004-of-00015.bin",
153
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00004-of-00015.bin",
154
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00004-of-00015.bin",
155
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00004-of-00015.bin",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00015.bin",
157
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00004-of-00015.bin",
158
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00005-of-00015.bin",
159
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00005-of-00015.bin",
160
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00004-of-00015.bin",
161
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00004-of-00015.bin",
162
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00005-of-00015.bin",
163
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00004-of-00015.bin",
164
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00004-of-00015.bin",
165
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00004-of-00015.bin",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00015.bin",
167
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00004-of-00015.bin",
168
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00005-of-00015.bin",
169
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00005-of-00015.bin",
170
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00005-of-00015.bin",
171
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00005-of-00015.bin",
172
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00005-of-00015.bin",
173
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00005-of-00015.bin",
174
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00005-of-00015.bin",
175
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00005-of-00015.bin",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00015.bin",
177
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00005-of-00015.bin",
178
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00005-of-00015.bin",
179
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00005-of-00015.bin",
180
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00005-of-00015.bin",
181
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00005-of-00015.bin",
182
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00005-of-00015.bin",
183
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00005-of-00015.bin",
184
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00005-of-00015.bin",
185
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00005-of-00015.bin",
186
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00015.bin",
187
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00005-of-00015.bin",
188
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00005-of-00015.bin",
189
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00005-of-00015.bin",
190
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00005-of-00015.bin",
191
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00005-of-00015.bin",
192
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00005-of-00015.bin",
193
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00005-of-00015.bin",
194
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00005-of-00015.bin",
195
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00005-of-00015.bin",
196
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00015.bin",
197
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00005-of-00015.bin",
198
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00005-of-00015.bin",
199
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00005-of-00015.bin",
200
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00005-of-00015.bin",
201
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00005-of-00015.bin",
202
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00005-of-00015.bin",
203
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00005-of-00015.bin",
204
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00005-of-00015.bin",
205
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00005-of-00015.bin",
206
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00015.bin",
207
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00005-of-00015.bin",
208
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00005-of-00015.bin",
209
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00005-of-00015.bin",
210
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00005-of-00015.bin",
211
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00005-of-00015.bin",
212
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00005-of-00015.bin",
213
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00005-of-00015.bin",
214
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00005-of-00015.bin",
215
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00005-of-00015.bin",
216
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00015.bin",
217
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00005-of-00015.bin",
218
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00006-of-00015.bin",
219
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00006-of-00015.bin",
220
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00005-of-00015.bin",
221
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00006-of-00015.bin",
222
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00006-of-00015.bin",
223
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00005-of-00015.bin",
224
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00005-of-00015.bin",
225
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00005-of-00015.bin",
226
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00015.bin",
227
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00005-of-00015.bin",
228
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00006-of-00015.bin",
229
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00006-of-00015.bin",
230
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00006-of-00015.bin",
231
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00006-of-00015.bin",
232
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00006-of-00015.bin",
233
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00006-of-00015.bin",
234
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00006-of-00015.bin",
235
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00006-of-00015.bin",
236
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00015.bin",
237
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00006-of-00015.bin",
238
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00015.bin",
239
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00015.bin",
240
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00015.bin",
241
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00015.bin",
242
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00015.bin",
243
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00015.bin",
244
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00015.bin",
245
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00015.bin",
246
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00015.bin",
247
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00015.bin",
248
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00006-of-00015.bin",
249
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00006-of-00015.bin",
250
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00006-of-00015.bin",
251
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00006-of-00015.bin",
252
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00006-of-00015.bin",
253
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00006-of-00015.bin",
254
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00006-of-00015.bin",
255
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00006-of-00015.bin",
256
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00015.bin",
257
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00006-of-00015.bin",
258
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00006-of-00015.bin",
259
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00006-of-00015.bin",
260
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00006-of-00015.bin",
261
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00006-of-00015.bin",
262
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00006-of-00015.bin",
263
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00006-of-00015.bin",
264
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00006-of-00015.bin",
265
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00006-of-00015.bin",
266
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00015.bin",
267
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00006-of-00015.bin",
268
+ "model.layers.32.input_layernorm.weight": "pytorch_model-00006-of-00015.bin",
269
+ "model.layers.32.mlp.down_proj.weight": "pytorch_model-00006-of-00015.bin",
270
+ "model.layers.32.mlp.gate_proj.weight": "pytorch_model-00006-of-00015.bin",
271
+ "model.layers.32.mlp.up_proj.weight": "pytorch_model-00006-of-00015.bin",
272
+ "model.layers.32.post_attention_layernorm.weight": "pytorch_model-00006-of-00015.bin",
273
+ "model.layers.32.self_attn.k_proj.weight": "pytorch_model-00006-of-00015.bin",
274
+ "model.layers.32.self_attn.o_proj.weight": "pytorch_model-00006-of-00015.bin",
275
+ "model.layers.32.self_attn.q_proj.weight": "pytorch_model-00006-of-00015.bin",
276
+ "model.layers.32.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00015.bin",
277
+ "model.layers.32.self_attn.v_proj.weight": "pytorch_model-00006-of-00015.bin",
278
+ "model.layers.33.input_layernorm.weight": "pytorch_model-00006-of-00015.bin",
279
+ "model.layers.33.mlp.down_proj.weight": "pytorch_model-00006-of-00015.bin",
280
+ "model.layers.33.mlp.gate_proj.weight": "pytorch_model-00006-of-00015.bin",
281
+ "model.layers.33.mlp.up_proj.weight": "pytorch_model-00006-of-00015.bin",
282
+ "model.layers.33.post_attention_layernorm.weight": "pytorch_model-00006-of-00015.bin",
283
+ "model.layers.33.self_attn.k_proj.weight": "pytorch_model-00006-of-00015.bin",
284
+ "model.layers.33.self_attn.o_proj.weight": "pytorch_model-00006-of-00015.bin",
285
+ "model.layers.33.self_attn.q_proj.weight": "pytorch_model-00006-of-00015.bin",
286
+ "model.layers.33.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00015.bin",
287
+ "model.layers.33.self_attn.v_proj.weight": "pytorch_model-00006-of-00015.bin",
288
+ "model.layers.34.input_layernorm.weight": "pytorch_model-00007-of-00015.bin",
289
+ "model.layers.34.mlp.down_proj.weight": "pytorch_model-00007-of-00015.bin",
290
+ "model.layers.34.mlp.gate_proj.weight": "pytorch_model-00007-of-00015.bin",
291
+ "model.layers.34.mlp.up_proj.weight": "pytorch_model-00007-of-00015.bin",
292
+ "model.layers.34.post_attention_layernorm.weight": "pytorch_model-00007-of-00015.bin",
293
+ "model.layers.34.self_attn.k_proj.weight": "pytorch_model-00006-of-00015.bin",
294
+ "model.layers.34.self_attn.o_proj.weight": "pytorch_model-00006-of-00015.bin",
295
+ "model.layers.34.self_attn.q_proj.weight": "pytorch_model-00006-of-00015.bin",
296
+ "model.layers.34.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00015.bin",
297
+ "model.layers.34.self_attn.v_proj.weight": "pytorch_model-00006-of-00015.bin",
298
+ "model.layers.35.input_layernorm.weight": "pytorch_model-00007-of-00015.bin",
299
+ "model.layers.35.mlp.down_proj.weight": "pytorch_model-00007-of-00015.bin",
300
+ "model.layers.35.mlp.gate_proj.weight": "pytorch_model-00007-of-00015.bin",
301
+ "model.layers.35.mlp.up_proj.weight": "pytorch_model-00007-of-00015.bin",
302
+ "model.layers.35.post_attention_layernorm.weight": "pytorch_model-00007-of-00015.bin",
303
+ "model.layers.35.self_attn.k_proj.weight": "pytorch_model-00007-of-00015.bin",
304
+ "model.layers.35.self_attn.o_proj.weight": "pytorch_model-00007-of-00015.bin",
305
+ "model.layers.35.self_attn.q_proj.weight": "pytorch_model-00007-of-00015.bin",
306
+ "model.layers.35.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00015.bin",
307
+ "model.layers.35.self_attn.v_proj.weight": "pytorch_model-00007-of-00015.bin",
308
+ "model.layers.36.input_layernorm.weight": "pytorch_model-00007-of-00015.bin",
309
+ "model.layers.36.mlp.down_proj.weight": "pytorch_model-00007-of-00015.bin",
310
+ "model.layers.36.mlp.gate_proj.weight": "pytorch_model-00007-of-00015.bin",
311
+ "model.layers.36.mlp.up_proj.weight": "pytorch_model-00007-of-00015.bin",
312
+ "model.layers.36.post_attention_layernorm.weight": "pytorch_model-00007-of-00015.bin",
313
+ "model.layers.36.self_attn.k_proj.weight": "pytorch_model-00007-of-00015.bin",
314
+ "model.layers.36.self_attn.o_proj.weight": "pytorch_model-00007-of-00015.bin",
315
+ "model.layers.36.self_attn.q_proj.weight": "pytorch_model-00007-of-00015.bin",
316
+ "model.layers.36.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00015.bin",
317
+ "model.layers.36.self_attn.v_proj.weight": "pytorch_model-00007-of-00015.bin",
318
+ "model.layers.37.input_layernorm.weight": "pytorch_model-00007-of-00015.bin",
319
+ "model.layers.37.mlp.down_proj.weight": "pytorch_model-00007-of-00015.bin",
320
+ "model.layers.37.mlp.gate_proj.weight": "pytorch_model-00007-of-00015.bin",
321
+ "model.layers.37.mlp.up_proj.weight": "pytorch_model-00007-of-00015.bin",
322
+ "model.layers.37.post_attention_layernorm.weight": "pytorch_model-00007-of-00015.bin",
323
+ "model.layers.37.self_attn.k_proj.weight": "pytorch_model-00007-of-00015.bin",
324
+ "model.layers.37.self_attn.o_proj.weight": "pytorch_model-00007-of-00015.bin",
325
+ "model.layers.37.self_attn.q_proj.weight": "pytorch_model-00007-of-00015.bin",
326
+ "model.layers.37.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00015.bin",
327
+ "model.layers.37.self_attn.v_proj.weight": "pytorch_model-00007-of-00015.bin",
328
+ "model.layers.38.input_layernorm.weight": "pytorch_model-00007-of-00015.bin",
329
+ "model.layers.38.mlp.down_proj.weight": "pytorch_model-00007-of-00015.bin",
330
+ "model.layers.38.mlp.gate_proj.weight": "pytorch_model-00007-of-00015.bin",
331
+ "model.layers.38.mlp.up_proj.weight": "pytorch_model-00007-of-00015.bin",
332
+ "model.layers.38.post_attention_layernorm.weight": "pytorch_model-00007-of-00015.bin",
333
+ "model.layers.38.self_attn.k_proj.weight": "pytorch_model-00007-of-00015.bin",
334
+ "model.layers.38.self_attn.o_proj.weight": "pytorch_model-00007-of-00015.bin",
335
+ "model.layers.38.self_attn.q_proj.weight": "pytorch_model-00007-of-00015.bin",
336
+ "model.layers.38.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00015.bin",
337
+ "model.layers.38.self_attn.v_proj.weight": "pytorch_model-00007-of-00015.bin",
338
+ "model.layers.39.input_layernorm.weight": "pytorch_model-00007-of-00015.bin",
339
+ "model.layers.39.mlp.down_proj.weight": "pytorch_model-00007-of-00015.bin",
340
+ "model.layers.39.mlp.gate_proj.weight": "pytorch_model-00007-of-00015.bin",
341
+ "model.layers.39.mlp.up_proj.weight": "pytorch_model-00007-of-00015.bin",
342
+ "model.layers.39.post_attention_layernorm.weight": "pytorch_model-00007-of-00015.bin",
343
+ "model.layers.39.self_attn.k_proj.weight": "pytorch_model-00007-of-00015.bin",
344
+ "model.layers.39.self_attn.o_proj.weight": "pytorch_model-00007-of-00015.bin",
345
+ "model.layers.39.self_attn.q_proj.weight": "pytorch_model-00007-of-00015.bin",
346
+ "model.layers.39.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00015.bin",
347
+ "model.layers.39.self_attn.v_proj.weight": "pytorch_model-00007-of-00015.bin",
348
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00015.bin",
349
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00015.bin",
350
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00015.bin",
351
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00015.bin",
352
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00015.bin",
353
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00015.bin",
354
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00015.bin",
355
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00015.bin",
356
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00015.bin",
357
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00015.bin",
358
+ "model.layers.40.input_layernorm.weight": "pytorch_model-00008-of-00015.bin",
359
+ "model.layers.40.mlp.down_proj.weight": "pytorch_model-00008-of-00015.bin",
360
+ "model.layers.40.mlp.gate_proj.weight": "pytorch_model-00008-of-00015.bin",
361
+ "model.layers.40.mlp.up_proj.weight": "pytorch_model-00008-of-00015.bin",
362
+ "model.layers.40.post_attention_layernorm.weight": "pytorch_model-00008-of-00015.bin",
363
+ "model.layers.40.self_attn.k_proj.weight": "pytorch_model-00008-of-00015.bin",
364
+ "model.layers.40.self_attn.o_proj.weight": "pytorch_model-00008-of-00015.bin",
365
+ "model.layers.40.self_attn.q_proj.weight": "pytorch_model-00008-of-00015.bin",
366
+ "model.layers.40.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00015.bin",
367
+ "model.layers.40.self_attn.v_proj.weight": "pytorch_model-00008-of-00015.bin",
368
+ "model.layers.41.input_layernorm.weight": "pytorch_model-00008-of-00015.bin",
369
+ "model.layers.41.mlp.down_proj.weight": "pytorch_model-00008-of-00015.bin",
370
+ "model.layers.41.mlp.gate_proj.weight": "pytorch_model-00008-of-00015.bin",
371
+ "model.layers.41.mlp.up_proj.weight": "pytorch_model-00008-of-00015.bin",
372
+ "model.layers.41.post_attention_layernorm.weight": "pytorch_model-00008-of-00015.bin",
373
+ "model.layers.41.self_attn.k_proj.weight": "pytorch_model-00008-of-00015.bin",
374
+ "model.layers.41.self_attn.o_proj.weight": "pytorch_model-00008-of-00015.bin",
375
+ "model.layers.41.self_attn.q_proj.weight": "pytorch_model-00008-of-00015.bin",
376
+ "model.layers.41.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00015.bin",
377
+ "model.layers.41.self_attn.v_proj.weight": "pytorch_model-00008-of-00015.bin",
378
+ "model.layers.42.input_layernorm.weight": "pytorch_model-00008-of-00015.bin",
379
+ "model.layers.42.mlp.down_proj.weight": "pytorch_model-00008-of-00015.bin",
380
+ "model.layers.42.mlp.gate_proj.weight": "pytorch_model-00008-of-00015.bin",
381
+ "model.layers.42.mlp.up_proj.weight": "pytorch_model-00008-of-00015.bin",
382
+ "model.layers.42.post_attention_layernorm.weight": "pytorch_model-00008-of-00015.bin",
383
+ "model.layers.42.self_attn.k_proj.weight": "pytorch_model-00008-of-00015.bin",
384
+ "model.layers.42.self_attn.o_proj.weight": "pytorch_model-00008-of-00015.bin",
385
+ "model.layers.42.self_attn.q_proj.weight": "pytorch_model-00008-of-00015.bin",
386
+ "model.layers.42.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00015.bin",
387
+ "model.layers.42.self_attn.v_proj.weight": "pytorch_model-00008-of-00015.bin",
388
+ "model.layers.43.input_layernorm.weight": "pytorch_model-00008-of-00015.bin",
389
+ "model.layers.43.mlp.down_proj.weight": "pytorch_model-00008-of-00015.bin",
390
+ "model.layers.43.mlp.gate_proj.weight": "pytorch_model-00008-of-00015.bin",
391
+ "model.layers.43.mlp.up_proj.weight": "pytorch_model-00008-of-00015.bin",
392
+ "model.layers.43.post_attention_layernorm.weight": "pytorch_model-00008-of-00015.bin",
393
+ "model.layers.43.self_attn.k_proj.weight": "pytorch_model-00008-of-00015.bin",
394
+ "model.layers.43.self_attn.o_proj.weight": "pytorch_model-00008-of-00015.bin",
395
+ "model.layers.43.self_attn.q_proj.weight": "pytorch_model-00008-of-00015.bin",
396
+ "model.layers.43.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00015.bin",
397
+ "model.layers.43.self_attn.v_proj.weight": "pytorch_model-00008-of-00015.bin",
398
+ "model.layers.44.input_layernorm.weight": "pytorch_model-00008-of-00015.bin",
399
+ "model.layers.44.mlp.down_proj.weight": "pytorch_model-00008-of-00015.bin",
400
+ "model.layers.44.mlp.gate_proj.weight": "pytorch_model-00008-of-00015.bin",
401
+ "model.layers.44.mlp.up_proj.weight": "pytorch_model-00008-of-00015.bin",
402
+ "model.layers.44.post_attention_layernorm.weight": "pytorch_model-00008-of-00015.bin",
403
+ "model.layers.44.self_attn.k_proj.weight": "pytorch_model-00008-of-00015.bin",
404
+ "model.layers.44.self_attn.o_proj.weight": "pytorch_model-00008-of-00015.bin",
405
+ "model.layers.44.self_attn.q_proj.weight": "pytorch_model-00008-of-00015.bin",
406
+ "model.layers.44.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00015.bin",
407
+ "model.layers.44.self_attn.v_proj.weight": "pytorch_model-00008-of-00015.bin",
408
+ "model.layers.45.input_layernorm.weight": "pytorch_model-00009-of-00015.bin",
409
+ "model.layers.45.mlp.down_proj.weight": "pytorch_model-00009-of-00015.bin",
410
+ "model.layers.45.mlp.gate_proj.weight": "pytorch_model-00008-of-00015.bin",
411
+ "model.layers.45.mlp.up_proj.weight": "pytorch_model-00008-of-00015.bin",
412
+ "model.layers.45.post_attention_layernorm.weight": "pytorch_model-00009-of-00015.bin",
413
+ "model.layers.45.self_attn.k_proj.weight": "pytorch_model-00008-of-00015.bin",
414
+ "model.layers.45.self_attn.o_proj.weight": "pytorch_model-00008-of-00015.bin",
415
+ "model.layers.45.self_attn.q_proj.weight": "pytorch_model-00008-of-00015.bin",
416
+ "model.layers.45.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00015.bin",
417
+ "model.layers.45.self_attn.v_proj.weight": "pytorch_model-00008-of-00015.bin",
418
+ "model.layers.46.input_layernorm.weight": "pytorch_model-00009-of-00015.bin",
419
+ "model.layers.46.mlp.down_proj.weight": "pytorch_model-00009-of-00015.bin",
420
+ "model.layers.46.mlp.gate_proj.weight": "pytorch_model-00009-of-00015.bin",
421
+ "model.layers.46.mlp.up_proj.weight": "pytorch_model-00009-of-00015.bin",
422
+ "model.layers.46.post_attention_layernorm.weight": "pytorch_model-00009-of-00015.bin",
423
+ "model.layers.46.self_attn.k_proj.weight": "pytorch_model-00009-of-00015.bin",
424
+ "model.layers.46.self_attn.o_proj.weight": "pytorch_model-00009-of-00015.bin",
425
+ "model.layers.46.self_attn.q_proj.weight": "pytorch_model-00009-of-00015.bin",
426
+ "model.layers.46.self_attn.rotary_emb.inv_freq": "pytorch_model-00009-of-00015.bin",
427
+ "model.layers.46.self_attn.v_proj.weight": "pytorch_model-00009-of-00015.bin",
428
+ "model.layers.47.input_layernorm.weight": "pytorch_model-00009-of-00015.bin",
429
+ "model.layers.47.mlp.down_proj.weight": "pytorch_model-00009-of-00015.bin",
430
+ "model.layers.47.mlp.gate_proj.weight": "pytorch_model-00009-of-00015.bin",
431
+ "model.layers.47.mlp.up_proj.weight": "pytorch_model-00009-of-00015.bin",
432
+ "model.layers.47.post_attention_layernorm.weight": "pytorch_model-00009-of-00015.bin",
433
+ "model.layers.47.self_attn.k_proj.weight": "pytorch_model-00009-of-00015.bin",
434
+ "model.layers.47.self_attn.o_proj.weight": "pytorch_model-00009-of-00015.bin",
435
+ "model.layers.47.self_attn.q_proj.weight": "pytorch_model-00009-of-00015.bin",
436
+ "model.layers.47.self_attn.rotary_emb.inv_freq": "pytorch_model-00009-of-00015.bin",
437
+ "model.layers.47.self_attn.v_proj.weight": "pytorch_model-00009-of-00015.bin",
438
+ "model.layers.48.input_layernorm.weight": "pytorch_model-00009-of-00015.bin",
439
+ "model.layers.48.mlp.down_proj.weight": "pytorch_model-00009-of-00015.bin",
440
+ "model.layers.48.mlp.gate_proj.weight": "pytorch_model-00009-of-00015.bin",
441
+ "model.layers.48.mlp.up_proj.weight": "pytorch_model-00009-of-00015.bin",
442
+ "model.layers.48.post_attention_layernorm.weight": "pytorch_model-00009-of-00015.bin",
443
+ "model.layers.48.self_attn.k_proj.weight": "pytorch_model-00009-of-00015.bin",
444
+ "model.layers.48.self_attn.o_proj.weight": "pytorch_model-00009-of-00015.bin",
445
+ "model.layers.48.self_attn.q_proj.weight": "pytorch_model-00009-of-00015.bin",
446
+ "model.layers.48.self_attn.rotary_emb.inv_freq": "pytorch_model-00009-of-00015.bin",
447
+ "model.layers.48.self_attn.v_proj.weight": "pytorch_model-00009-of-00015.bin",
448
+ "model.layers.49.input_layernorm.weight": "pytorch_model-00009-of-00015.bin",
449
+ "model.layers.49.mlp.down_proj.weight": "pytorch_model-00009-of-00015.bin",
450
+ "model.layers.49.mlp.gate_proj.weight": "pytorch_model-00009-of-00015.bin",
451
+ "model.layers.49.mlp.up_proj.weight": "pytorch_model-00009-of-00015.bin",
452
+ "model.layers.49.post_attention_layernorm.weight": "pytorch_model-00009-of-00015.bin",
453
+ "model.layers.49.self_attn.k_proj.weight": "pytorch_model-00009-of-00015.bin",
454
+ "model.layers.49.self_attn.o_proj.weight": "pytorch_model-00009-of-00015.bin",
455
+ "model.layers.49.self_attn.q_proj.weight": "pytorch_model-00009-of-00015.bin",
456
+ "model.layers.49.self_attn.rotary_emb.inv_freq": "pytorch_model-00009-of-00015.bin",
457
+ "model.layers.49.self_attn.v_proj.weight": "pytorch_model-00009-of-00015.bin",
458
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00002-of-00015.bin",
459
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00002-of-00015.bin",
460
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00015.bin",
461
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00002-of-00015.bin",
462
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00002-of-00015.bin",
463
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00015.bin",
464
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00015.bin",
465
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00015.bin",
466
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00015.bin",
467
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00015.bin",
468
+ "model.layers.50.input_layernorm.weight": "pytorch_model-00009-of-00015.bin",
469
+ "model.layers.50.mlp.down_proj.weight": "pytorch_model-00009-of-00015.bin",
470
+ "model.layers.50.mlp.gate_proj.weight": "pytorch_model-00009-of-00015.bin",
471
+ "model.layers.50.mlp.up_proj.weight": "pytorch_model-00009-of-00015.bin",
472
+ "model.layers.50.post_attention_layernorm.weight": "pytorch_model-00009-of-00015.bin",
473
+ "model.layers.50.self_attn.k_proj.weight": "pytorch_model-00009-of-00015.bin",
474
+ "model.layers.50.self_attn.o_proj.weight": "pytorch_model-00009-of-00015.bin",
475
+ "model.layers.50.self_attn.q_proj.weight": "pytorch_model-00009-of-00015.bin",
476
+ "model.layers.50.self_attn.rotary_emb.inv_freq": "pytorch_model-00009-of-00015.bin",
477
+ "model.layers.50.self_attn.v_proj.weight": "pytorch_model-00009-of-00015.bin",
478
+ "model.layers.51.input_layernorm.weight": "pytorch_model-00010-of-00015.bin",
479
+ "model.layers.51.mlp.down_proj.weight": "pytorch_model-00010-of-00015.bin",
480
+ "model.layers.51.mlp.gate_proj.weight": "pytorch_model-00009-of-00015.bin",
481
+ "model.layers.51.mlp.up_proj.weight": "pytorch_model-00010-of-00015.bin",
482
+ "model.layers.51.post_attention_layernorm.weight": "pytorch_model-00010-of-00015.bin",
483
+ "model.layers.51.self_attn.k_proj.weight": "pytorch_model-00009-of-00015.bin",
484
+ "model.layers.51.self_attn.o_proj.weight": "pytorch_model-00009-of-00015.bin",
485
+ "model.layers.51.self_attn.q_proj.weight": "pytorch_model-00009-of-00015.bin",
486
+ "model.layers.51.self_attn.rotary_emb.inv_freq": "pytorch_model-00009-of-00015.bin",
487
+ "model.layers.51.self_attn.v_proj.weight": "pytorch_model-00009-of-00015.bin",
488
+ "model.layers.52.input_layernorm.weight": "pytorch_model-00010-of-00015.bin",
489
+ "model.layers.52.mlp.down_proj.weight": "pytorch_model-00010-of-00015.bin",
490
+ "model.layers.52.mlp.gate_proj.weight": "pytorch_model-00010-of-00015.bin",
491
+ "model.layers.52.mlp.up_proj.weight": "pytorch_model-00010-of-00015.bin",
492
+ "model.layers.52.post_attention_layernorm.weight": "pytorch_model-00010-of-00015.bin",
493
+ "model.layers.52.self_attn.k_proj.weight": "pytorch_model-00010-of-00015.bin",
494
+ "model.layers.52.self_attn.o_proj.weight": "pytorch_model-00010-of-00015.bin",
495
+ "model.layers.52.self_attn.q_proj.weight": "pytorch_model-00010-of-00015.bin",
496
+ "model.layers.52.self_attn.rotary_emb.inv_freq": "pytorch_model-00010-of-00015.bin",
497
+ "model.layers.52.self_attn.v_proj.weight": "pytorch_model-00010-of-00015.bin",
498
+ "model.layers.53.input_layernorm.weight": "pytorch_model-00010-of-00015.bin",
499
+ "model.layers.53.mlp.down_proj.weight": "pytorch_model-00010-of-00015.bin",
500
+ "model.layers.53.mlp.gate_proj.weight": "pytorch_model-00010-of-00015.bin",
501
+ "model.layers.53.mlp.up_proj.weight": "pytorch_model-00010-of-00015.bin",
502
+ "model.layers.53.post_attention_layernorm.weight": "pytorch_model-00010-of-00015.bin",
503
+ "model.layers.53.self_attn.k_proj.weight": "pytorch_model-00010-of-00015.bin",
504
+ "model.layers.53.self_attn.o_proj.weight": "pytorch_model-00010-of-00015.bin",
505
+ "model.layers.53.self_attn.q_proj.weight": "pytorch_model-00010-of-00015.bin",
506
+ "model.layers.53.self_attn.rotary_emb.inv_freq": "pytorch_model-00010-of-00015.bin",
507
+ "model.layers.53.self_attn.v_proj.weight": "pytorch_model-00010-of-00015.bin",
508
+ "model.layers.54.input_layernorm.weight": "pytorch_model-00010-of-00015.bin",
509
+ "model.layers.54.mlp.down_proj.weight": "pytorch_model-00010-of-00015.bin",
510
+ "model.layers.54.mlp.gate_proj.weight": "pytorch_model-00010-of-00015.bin",
511
+ "model.layers.54.mlp.up_proj.weight": "pytorch_model-00010-of-00015.bin",
512
+ "model.layers.54.post_attention_layernorm.weight": "pytorch_model-00010-of-00015.bin",
513
+ "model.layers.54.self_attn.k_proj.weight": "pytorch_model-00010-of-00015.bin",
514
+ "model.layers.54.self_attn.o_proj.weight": "pytorch_model-00010-of-00015.bin",
515
+ "model.layers.54.self_attn.q_proj.weight": "pytorch_model-00010-of-00015.bin",
516
+ "model.layers.54.self_attn.rotary_emb.inv_freq": "pytorch_model-00010-of-00015.bin",
517
+ "model.layers.54.self_attn.v_proj.weight": "pytorch_model-00010-of-00015.bin",
518
+ "model.layers.55.input_layernorm.weight": "pytorch_model-00010-of-00015.bin",
519
+ "model.layers.55.mlp.down_proj.weight": "pytorch_model-00010-of-00015.bin",
520
+ "model.layers.55.mlp.gate_proj.weight": "pytorch_model-00010-of-00015.bin",
521
+ "model.layers.55.mlp.up_proj.weight": "pytorch_model-00010-of-00015.bin",
522
+ "model.layers.55.post_attention_layernorm.weight": "pytorch_model-00010-of-00015.bin",
523
+ "model.layers.55.self_attn.k_proj.weight": "pytorch_model-00010-of-00015.bin",
524
+ "model.layers.55.self_attn.o_proj.weight": "pytorch_model-00010-of-00015.bin",
525
+ "model.layers.55.self_attn.q_proj.weight": "pytorch_model-00010-of-00015.bin",
526
+ "model.layers.55.self_attn.rotary_emb.inv_freq": "pytorch_model-00010-of-00015.bin",
527
+ "model.layers.55.self_attn.v_proj.weight": "pytorch_model-00010-of-00015.bin",
528
+ "model.layers.56.input_layernorm.weight": "pytorch_model-00010-of-00015.bin",
529
+ "model.layers.56.mlp.down_proj.weight": "pytorch_model-00010-of-00015.bin",
530
+ "model.layers.56.mlp.gate_proj.weight": "pytorch_model-00010-of-00015.bin",
531
+ "model.layers.56.mlp.up_proj.weight": "pytorch_model-00010-of-00015.bin",
532
+ "model.layers.56.post_attention_layernorm.weight": "pytorch_model-00010-of-00015.bin",
533
+ "model.layers.56.self_attn.k_proj.weight": "pytorch_model-00010-of-00015.bin",
534
+ "model.layers.56.self_attn.o_proj.weight": "pytorch_model-00010-of-00015.bin",
535
+ "model.layers.56.self_attn.q_proj.weight": "pytorch_model-00010-of-00015.bin",
536
+ "model.layers.56.self_attn.rotary_emb.inv_freq": "pytorch_model-00010-of-00015.bin",
537
+ "model.layers.56.self_attn.v_proj.weight": "pytorch_model-00010-of-00015.bin",
538
+ "model.layers.57.input_layernorm.weight": "pytorch_model-00011-of-00015.bin",
539
+ "model.layers.57.mlp.down_proj.weight": "pytorch_model-00011-of-00015.bin",
540
+ "model.layers.57.mlp.gate_proj.weight": "pytorch_model-00011-of-00015.bin",
541
+ "model.layers.57.mlp.up_proj.weight": "pytorch_model-00011-of-00015.bin",
542
+ "model.layers.57.post_attention_layernorm.weight": "pytorch_model-00011-of-00015.bin",
543
+ "model.layers.57.self_attn.k_proj.weight": "pytorch_model-00010-of-00015.bin",
544
+ "model.layers.57.self_attn.o_proj.weight": "pytorch_model-00010-of-00015.bin",
545
+ "model.layers.57.self_attn.q_proj.weight": "pytorch_model-00010-of-00015.bin",
546
+ "model.layers.57.self_attn.rotary_emb.inv_freq": "pytorch_model-00010-of-00015.bin",
547
+ "model.layers.57.self_attn.v_proj.weight": "pytorch_model-00010-of-00015.bin",
548
+ "model.layers.58.input_layernorm.weight": "pytorch_model-00011-of-00015.bin",
549
+ "model.layers.58.mlp.down_proj.weight": "pytorch_model-00011-of-00015.bin",
550
+ "model.layers.58.mlp.gate_proj.weight": "pytorch_model-00011-of-00015.bin",
551
+ "model.layers.58.mlp.up_proj.weight": "pytorch_model-00011-of-00015.bin",
552
+ "model.layers.58.post_attention_layernorm.weight": "pytorch_model-00011-of-00015.bin",
553
+ "model.layers.58.self_attn.k_proj.weight": "pytorch_model-00011-of-00015.bin",
554
+ "model.layers.58.self_attn.o_proj.weight": "pytorch_model-00011-of-00015.bin",
555
+ "model.layers.58.self_attn.q_proj.weight": "pytorch_model-00011-of-00015.bin",
556
+ "model.layers.58.self_attn.rotary_emb.inv_freq": "pytorch_model-00011-of-00015.bin",
557
+ "model.layers.58.self_attn.v_proj.weight": "pytorch_model-00011-of-00015.bin",
558
+ "model.layers.59.input_layernorm.weight": "pytorch_model-00011-of-00015.bin",
559
+ "model.layers.59.mlp.down_proj.weight": "pytorch_model-00011-of-00015.bin",
560
+ "model.layers.59.mlp.gate_proj.weight": "pytorch_model-00011-of-00015.bin",
561
+ "model.layers.59.mlp.up_proj.weight": "pytorch_model-00011-of-00015.bin",
562
+ "model.layers.59.post_attention_layernorm.weight": "pytorch_model-00011-of-00015.bin",
563
+ "model.layers.59.self_attn.k_proj.weight": "pytorch_model-00011-of-00015.bin",
564
+ "model.layers.59.self_attn.o_proj.weight": "pytorch_model-00011-of-00015.bin",
565
+ "model.layers.59.self_attn.q_proj.weight": "pytorch_model-00011-of-00015.bin",
566
+ "model.layers.59.self_attn.rotary_emb.inv_freq": "pytorch_model-00011-of-00015.bin",
567
+ "model.layers.59.self_attn.v_proj.weight": "pytorch_model-00011-of-00015.bin",
568
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00002-of-00015.bin",
569
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00002-of-00015.bin",
570
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00002-of-00015.bin",
571
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00002-of-00015.bin",
572
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00002-of-00015.bin",
573
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00002-of-00015.bin",
574
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00002-of-00015.bin",
575
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00002-of-00015.bin",
576
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00015.bin",
577
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00002-of-00015.bin",
578
+ "model.layers.60.input_layernorm.weight": "pytorch_model-00011-of-00015.bin",
579
+ "model.layers.60.mlp.down_proj.weight": "pytorch_model-00011-of-00015.bin",
580
+ "model.layers.60.mlp.gate_proj.weight": "pytorch_model-00011-of-00015.bin",
581
+ "model.layers.60.mlp.up_proj.weight": "pytorch_model-00011-of-00015.bin",
582
+ "model.layers.60.post_attention_layernorm.weight": "pytorch_model-00011-of-00015.bin",
583
+ "model.layers.60.self_attn.k_proj.weight": "pytorch_model-00011-of-00015.bin",
584
+ "model.layers.60.self_attn.o_proj.weight": "pytorch_model-00011-of-00015.bin",
585
+ "model.layers.60.self_attn.q_proj.weight": "pytorch_model-00011-of-00015.bin",
586
+ "model.layers.60.self_attn.rotary_emb.inv_freq": "pytorch_model-00011-of-00015.bin",
587
+ "model.layers.60.self_attn.v_proj.weight": "pytorch_model-00011-of-00015.bin",
588
+ "model.layers.61.input_layernorm.weight": "pytorch_model-00011-of-00015.bin",
589
+ "model.layers.61.mlp.down_proj.weight": "pytorch_model-00011-of-00015.bin",
590
+ "model.layers.61.mlp.gate_proj.weight": "pytorch_model-00011-of-00015.bin",
591
+ "model.layers.61.mlp.up_proj.weight": "pytorch_model-00011-of-00015.bin",
592
+ "model.layers.61.post_attention_layernorm.weight": "pytorch_model-00011-of-00015.bin",
593
+ "model.layers.61.self_attn.k_proj.weight": "pytorch_model-00011-of-00015.bin",
594
+ "model.layers.61.self_attn.o_proj.weight": "pytorch_model-00011-of-00015.bin",
595
+ "model.layers.61.self_attn.q_proj.weight": "pytorch_model-00011-of-00015.bin",
596
+ "model.layers.61.self_attn.rotary_emb.inv_freq": "pytorch_model-00011-of-00015.bin",
597
+ "model.layers.61.self_attn.v_proj.weight": "pytorch_model-00011-of-00015.bin",
598
+ "model.layers.62.input_layernorm.weight": "pytorch_model-00011-of-00015.bin",
599
+ "model.layers.62.mlp.down_proj.weight": "pytorch_model-00011-of-00015.bin",
600
+ "model.layers.62.mlp.gate_proj.weight": "pytorch_model-00011-of-00015.bin",
601
+ "model.layers.62.mlp.up_proj.weight": "pytorch_model-00011-of-00015.bin",
602
+ "model.layers.62.post_attention_layernorm.weight": "pytorch_model-00011-of-00015.bin",
603
+ "model.layers.62.self_attn.k_proj.weight": "pytorch_model-00011-of-00015.bin",
604
+ "model.layers.62.self_attn.o_proj.weight": "pytorch_model-00011-of-00015.bin",
605
+ "model.layers.62.self_attn.q_proj.weight": "pytorch_model-00011-of-00015.bin",
606
+ "model.layers.62.self_attn.rotary_emb.inv_freq": "pytorch_model-00011-of-00015.bin",
607
+ "model.layers.62.self_attn.v_proj.weight": "pytorch_model-00011-of-00015.bin",
608
+ "model.layers.63.input_layernorm.weight": "pytorch_model-00012-of-00015.bin",
609
+ "model.layers.63.mlp.down_proj.weight": "pytorch_model-00012-of-00015.bin",
610
+ "model.layers.63.mlp.gate_proj.weight": "pytorch_model-00012-of-00015.bin",
611
+ "model.layers.63.mlp.up_proj.weight": "pytorch_model-00012-of-00015.bin",
612
+ "model.layers.63.post_attention_layernorm.weight": "pytorch_model-00012-of-00015.bin",
613
+ "model.layers.63.self_attn.k_proj.weight": "pytorch_model-00012-of-00015.bin",
614
+ "model.layers.63.self_attn.o_proj.weight": "pytorch_model-00012-of-00015.bin",
615
+ "model.layers.63.self_attn.q_proj.weight": "pytorch_model-00012-of-00015.bin",
616
+ "model.layers.63.self_attn.rotary_emb.inv_freq": "pytorch_model-00012-of-00015.bin",
617
+ "model.layers.63.self_attn.v_proj.weight": "pytorch_model-00012-of-00015.bin",
618
+ "model.layers.64.input_layernorm.weight": "pytorch_model-00012-of-00015.bin",
619
+ "model.layers.64.mlp.down_proj.weight": "pytorch_model-00012-of-00015.bin",
620
+ "model.layers.64.mlp.gate_proj.weight": "pytorch_model-00012-of-00015.bin",
621
+ "model.layers.64.mlp.up_proj.weight": "pytorch_model-00012-of-00015.bin",
622
+ "model.layers.64.post_attention_layernorm.weight": "pytorch_model-00012-of-00015.bin",
623
+ "model.layers.64.self_attn.k_proj.weight": "pytorch_model-00012-of-00015.bin",
624
+ "model.layers.64.self_attn.o_proj.weight": "pytorch_model-00012-of-00015.bin",
625
+ "model.layers.64.self_attn.q_proj.weight": "pytorch_model-00012-of-00015.bin",
626
+ "model.layers.64.self_attn.rotary_emb.inv_freq": "pytorch_model-00012-of-00015.bin",
627
+ "model.layers.64.self_attn.v_proj.weight": "pytorch_model-00012-of-00015.bin",
628
+ "model.layers.65.input_layernorm.weight": "pytorch_model-00012-of-00015.bin",
629
+ "model.layers.65.mlp.down_proj.weight": "pytorch_model-00012-of-00015.bin",
630
+ "model.layers.65.mlp.gate_proj.weight": "pytorch_model-00012-of-00015.bin",
631
+ "model.layers.65.mlp.up_proj.weight": "pytorch_model-00012-of-00015.bin",
632
+ "model.layers.65.post_attention_layernorm.weight": "pytorch_model-00012-of-00015.bin",
633
+ "model.layers.65.self_attn.k_proj.weight": "pytorch_model-00012-of-00015.bin",
634
+ "model.layers.65.self_attn.o_proj.weight": "pytorch_model-00012-of-00015.bin",
635
+ "model.layers.65.self_attn.q_proj.weight": "pytorch_model-00012-of-00015.bin",
636
+ "model.layers.65.self_attn.rotary_emb.inv_freq": "pytorch_model-00012-of-00015.bin",
637
+ "model.layers.65.self_attn.v_proj.weight": "pytorch_model-00012-of-00015.bin",
638
+ "model.layers.66.input_layernorm.weight": "pytorch_model-00012-of-00015.bin",
639
+ "model.layers.66.mlp.down_proj.weight": "pytorch_model-00012-of-00015.bin",
640
+ "model.layers.66.mlp.gate_proj.weight": "pytorch_model-00012-of-00015.bin",
641
+ "model.layers.66.mlp.up_proj.weight": "pytorch_model-00012-of-00015.bin",
642
+ "model.layers.66.post_attention_layernorm.weight": "pytorch_model-00012-of-00015.bin",
643
+ "model.layers.66.self_attn.k_proj.weight": "pytorch_model-00012-of-00015.bin",
644
+ "model.layers.66.self_attn.o_proj.weight": "pytorch_model-00012-of-00015.bin",
645
+ "model.layers.66.self_attn.q_proj.weight": "pytorch_model-00012-of-00015.bin",
646
+ "model.layers.66.self_attn.rotary_emb.inv_freq": "pytorch_model-00012-of-00015.bin",
647
+ "model.layers.66.self_attn.v_proj.weight": "pytorch_model-00012-of-00015.bin",
648
+ "model.layers.67.input_layernorm.weight": "pytorch_model-00012-of-00015.bin",
649
+ "model.layers.67.mlp.down_proj.weight": "pytorch_model-00012-of-00015.bin",
650
+ "model.layers.67.mlp.gate_proj.weight": "pytorch_model-00012-of-00015.bin",
651
+ "model.layers.67.mlp.up_proj.weight": "pytorch_model-00012-of-00015.bin",
652
+ "model.layers.67.post_attention_layernorm.weight": "pytorch_model-00012-of-00015.bin",
653
+ "model.layers.67.self_attn.k_proj.weight": "pytorch_model-00012-of-00015.bin",
654
+ "model.layers.67.self_attn.o_proj.weight": "pytorch_model-00012-of-00015.bin",
655
+ "model.layers.67.self_attn.q_proj.weight": "pytorch_model-00012-of-00015.bin",
656
+ "model.layers.67.self_attn.rotary_emb.inv_freq": "pytorch_model-00012-of-00015.bin",
657
+ "model.layers.67.self_attn.v_proj.weight": "pytorch_model-00012-of-00015.bin",
658
+ "model.layers.68.input_layernorm.weight": "pytorch_model-00013-of-00015.bin",
659
+ "model.layers.68.mlp.down_proj.weight": "pytorch_model-00013-of-00015.bin",
660
+ "model.layers.68.mlp.gate_proj.weight": "pytorch_model-00012-of-00015.bin",
661
+ "model.layers.68.mlp.up_proj.weight": "pytorch_model-00012-of-00015.bin",
662
+ "model.layers.68.post_attention_layernorm.weight": "pytorch_model-00013-of-00015.bin",
663
+ "model.layers.68.self_attn.k_proj.weight": "pytorch_model-00012-of-00015.bin",
664
+ "model.layers.68.self_attn.o_proj.weight": "pytorch_model-00012-of-00015.bin",
665
+ "model.layers.68.self_attn.q_proj.weight": "pytorch_model-00012-of-00015.bin",
666
+ "model.layers.68.self_attn.rotary_emb.inv_freq": "pytorch_model-00012-of-00015.bin",
667
+ "model.layers.68.self_attn.v_proj.weight": "pytorch_model-00012-of-00015.bin",
668
+ "model.layers.69.input_layernorm.weight": "pytorch_model-00013-of-00015.bin",
669
+ "model.layers.69.mlp.down_proj.weight": "pytorch_model-00013-of-00015.bin",
670
+ "model.layers.69.mlp.gate_proj.weight": "pytorch_model-00013-of-00015.bin",
671
+ "model.layers.69.mlp.up_proj.weight": "pytorch_model-00013-of-00015.bin",
672
+ "model.layers.69.post_attention_layernorm.weight": "pytorch_model-00013-of-00015.bin",
673
+ "model.layers.69.self_attn.k_proj.weight": "pytorch_model-00013-of-00015.bin",
674
+ "model.layers.69.self_attn.o_proj.weight": "pytorch_model-00013-of-00015.bin",
675
+ "model.layers.69.self_attn.q_proj.weight": "pytorch_model-00013-of-00015.bin",
676
+ "model.layers.69.self_attn.rotary_emb.inv_freq": "pytorch_model-00013-of-00015.bin",
677
+ "model.layers.69.self_attn.v_proj.weight": "pytorch_model-00013-of-00015.bin",
678
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00002-of-00015.bin",
679
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00002-of-00015.bin",
680
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00002-of-00015.bin",
681
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00002-of-00015.bin",
682
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00002-of-00015.bin",
683
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00002-of-00015.bin",
684
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00002-of-00015.bin",
685
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00002-of-00015.bin",
686
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00015.bin",
687
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00002-of-00015.bin",
688
+ "model.layers.70.input_layernorm.weight": "pytorch_model-00013-of-00015.bin",
689
+ "model.layers.70.mlp.down_proj.weight": "pytorch_model-00013-of-00015.bin",
690
+ "model.layers.70.mlp.gate_proj.weight": "pytorch_model-00013-of-00015.bin",
691
+ "model.layers.70.mlp.up_proj.weight": "pytorch_model-00013-of-00015.bin",
692
+ "model.layers.70.post_attention_layernorm.weight": "pytorch_model-00013-of-00015.bin",
693
+ "model.layers.70.self_attn.k_proj.weight": "pytorch_model-00013-of-00015.bin",
694
+ "model.layers.70.self_attn.o_proj.weight": "pytorch_model-00013-of-00015.bin",
695
+ "model.layers.70.self_attn.q_proj.weight": "pytorch_model-00013-of-00015.bin",
696
+ "model.layers.70.self_attn.rotary_emb.inv_freq": "pytorch_model-00013-of-00015.bin",
697
+ "model.layers.70.self_attn.v_proj.weight": "pytorch_model-00013-of-00015.bin",
698
+ "model.layers.71.input_layernorm.weight": "pytorch_model-00013-of-00015.bin",
699
+ "model.layers.71.mlp.down_proj.weight": "pytorch_model-00013-of-00015.bin",
700
+ "model.layers.71.mlp.gate_proj.weight": "pytorch_model-00013-of-00015.bin",
701
+ "model.layers.71.mlp.up_proj.weight": "pytorch_model-00013-of-00015.bin",
702
+ "model.layers.71.post_attention_layernorm.weight": "pytorch_model-00013-of-00015.bin",
703
+ "model.layers.71.self_attn.k_proj.weight": "pytorch_model-00013-of-00015.bin",
704
+ "model.layers.71.self_attn.o_proj.weight": "pytorch_model-00013-of-00015.bin",
705
+ "model.layers.71.self_attn.q_proj.weight": "pytorch_model-00013-of-00015.bin",
706
+ "model.layers.71.self_attn.rotary_emb.inv_freq": "pytorch_model-00013-of-00015.bin",
707
+ "model.layers.71.self_attn.v_proj.weight": "pytorch_model-00013-of-00015.bin",
708
+ "model.layers.72.input_layernorm.weight": "pytorch_model-00013-of-00015.bin",
709
+ "model.layers.72.mlp.down_proj.weight": "pytorch_model-00013-of-00015.bin",
710
+ "model.layers.72.mlp.gate_proj.weight": "pytorch_model-00013-of-00015.bin",
711
+ "model.layers.72.mlp.up_proj.weight": "pytorch_model-00013-of-00015.bin",
712
+ "model.layers.72.post_attention_layernorm.weight": "pytorch_model-00013-of-00015.bin",
713
+ "model.layers.72.self_attn.k_proj.weight": "pytorch_model-00013-of-00015.bin",
714
+ "model.layers.72.self_attn.o_proj.weight": "pytorch_model-00013-of-00015.bin",
715
+ "model.layers.72.self_attn.q_proj.weight": "pytorch_model-00013-of-00015.bin",
716
+ "model.layers.72.self_attn.rotary_emb.inv_freq": "pytorch_model-00013-of-00015.bin",
717
+ "model.layers.72.self_attn.v_proj.weight": "pytorch_model-00013-of-00015.bin",
718
+ "model.layers.73.input_layernorm.weight": "pytorch_model-00013-of-00015.bin",
719
+ "model.layers.73.mlp.down_proj.weight": "pytorch_model-00013-of-00015.bin",
720
+ "model.layers.73.mlp.gate_proj.weight": "pytorch_model-00013-of-00015.bin",
721
+ "model.layers.73.mlp.up_proj.weight": "pytorch_model-00013-of-00015.bin",
722
+ "model.layers.73.post_attention_layernorm.weight": "pytorch_model-00013-of-00015.bin",
723
+ "model.layers.73.self_attn.k_proj.weight": "pytorch_model-00013-of-00015.bin",
724
+ "model.layers.73.self_attn.o_proj.weight": "pytorch_model-00013-of-00015.bin",
725
+ "model.layers.73.self_attn.q_proj.weight": "pytorch_model-00013-of-00015.bin",
726
+ "model.layers.73.self_attn.rotary_emb.inv_freq": "pytorch_model-00013-of-00015.bin",
727
+ "model.layers.73.self_attn.v_proj.weight": "pytorch_model-00013-of-00015.bin",
728
+ "model.layers.74.input_layernorm.weight": "pytorch_model-00014-of-00015.bin",
729
+ "model.layers.74.mlp.down_proj.weight": "pytorch_model-00014-of-00015.bin",
730
+ "model.layers.74.mlp.gate_proj.weight": "pytorch_model-00013-of-00015.bin",
731
+ "model.layers.74.mlp.up_proj.weight": "pytorch_model-00014-of-00015.bin",
732
+ "model.layers.74.post_attention_layernorm.weight": "pytorch_model-00014-of-00015.bin",
733
+ "model.layers.74.self_attn.k_proj.weight": "pytorch_model-00013-of-00015.bin",
734
+ "model.layers.74.self_attn.o_proj.weight": "pytorch_model-00013-of-00015.bin",
735
+ "model.layers.74.self_attn.q_proj.weight": "pytorch_model-00013-of-00015.bin",
736
+ "model.layers.74.self_attn.rotary_emb.inv_freq": "pytorch_model-00013-of-00015.bin",
737
+ "model.layers.74.self_attn.v_proj.weight": "pytorch_model-00013-of-00015.bin",
738
+ "model.layers.75.input_layernorm.weight": "pytorch_model-00014-of-00015.bin",
739
+ "model.layers.75.mlp.down_proj.weight": "pytorch_model-00014-of-00015.bin",
740
+ "model.layers.75.mlp.gate_proj.weight": "pytorch_model-00014-of-00015.bin",
741
+ "model.layers.75.mlp.up_proj.weight": "pytorch_model-00014-of-00015.bin",
742
+ "model.layers.75.post_attention_layernorm.weight": "pytorch_model-00014-of-00015.bin",
743
+ "model.layers.75.self_attn.k_proj.weight": "pytorch_model-00014-of-00015.bin",
744
+ "model.layers.75.self_attn.o_proj.weight": "pytorch_model-00014-of-00015.bin",
745
+ "model.layers.75.self_attn.q_proj.weight": "pytorch_model-00014-of-00015.bin",
746
+ "model.layers.75.self_attn.rotary_emb.inv_freq": "pytorch_model-00014-of-00015.bin",
747
+ "model.layers.75.self_attn.v_proj.weight": "pytorch_model-00014-of-00015.bin",
748
+ "model.layers.76.input_layernorm.weight": "pytorch_model-00014-of-00015.bin",
749
+ "model.layers.76.mlp.down_proj.weight": "pytorch_model-00014-of-00015.bin",
750
+ "model.layers.76.mlp.gate_proj.weight": "pytorch_model-00014-of-00015.bin",
751
+ "model.layers.76.mlp.up_proj.weight": "pytorch_model-00014-of-00015.bin",
752
+ "model.layers.76.post_attention_layernorm.weight": "pytorch_model-00014-of-00015.bin",
753
+ "model.layers.76.self_attn.k_proj.weight": "pytorch_model-00014-of-00015.bin",
754
+ "model.layers.76.self_attn.o_proj.weight": "pytorch_model-00014-of-00015.bin",
755
+ "model.layers.76.self_attn.q_proj.weight": "pytorch_model-00014-of-00015.bin",
756
+ "model.layers.76.self_attn.rotary_emb.inv_freq": "pytorch_model-00014-of-00015.bin",
757
+ "model.layers.76.self_attn.v_proj.weight": "pytorch_model-00014-of-00015.bin",
758
+ "model.layers.77.input_layernorm.weight": "pytorch_model-00014-of-00015.bin",
759
+ "model.layers.77.mlp.down_proj.weight": "pytorch_model-00014-of-00015.bin",
760
+ "model.layers.77.mlp.gate_proj.weight": "pytorch_model-00014-of-00015.bin",
761
+ "model.layers.77.mlp.up_proj.weight": "pytorch_model-00014-of-00015.bin",
762
+ "model.layers.77.post_attention_layernorm.weight": "pytorch_model-00014-of-00015.bin",
763
+ "model.layers.77.self_attn.k_proj.weight": "pytorch_model-00014-of-00015.bin",
764
+ "model.layers.77.self_attn.o_proj.weight": "pytorch_model-00014-of-00015.bin",
765
+ "model.layers.77.self_attn.q_proj.weight": "pytorch_model-00014-of-00015.bin",
766
+ "model.layers.77.self_attn.rotary_emb.inv_freq": "pytorch_model-00014-of-00015.bin",
767
+ "model.layers.77.self_attn.v_proj.weight": "pytorch_model-00014-of-00015.bin",
768
+ "model.layers.78.input_layernorm.weight": "pytorch_model-00014-of-00015.bin",
769
+ "model.layers.78.mlp.down_proj.weight": "pytorch_model-00014-of-00015.bin",
770
+ "model.layers.78.mlp.gate_proj.weight": "pytorch_model-00014-of-00015.bin",
771
+ "model.layers.78.mlp.up_proj.weight": "pytorch_model-00014-of-00015.bin",
772
+ "model.layers.78.post_attention_layernorm.weight": "pytorch_model-00014-of-00015.bin",
773
+ "model.layers.78.self_attn.k_proj.weight": "pytorch_model-00014-of-00015.bin",
774
+ "model.layers.78.self_attn.o_proj.weight": "pytorch_model-00014-of-00015.bin",
775
+ "model.layers.78.self_attn.q_proj.weight": "pytorch_model-00014-of-00015.bin",
776
+ "model.layers.78.self_attn.rotary_emb.inv_freq": "pytorch_model-00014-of-00015.bin",
777
+ "model.layers.78.self_attn.v_proj.weight": "pytorch_model-00014-of-00015.bin",
778
+ "model.layers.79.input_layernorm.weight": "pytorch_model-00014-of-00015.bin",
779
+ "model.layers.79.mlp.down_proj.weight": "pytorch_model-00014-of-00015.bin",
780
+ "model.layers.79.mlp.gate_proj.weight": "pytorch_model-00014-of-00015.bin",
781
+ "model.layers.79.mlp.up_proj.weight": "pytorch_model-00014-of-00015.bin",
782
+ "model.layers.79.post_attention_layernorm.weight": "pytorch_model-00014-of-00015.bin",
783
+ "model.layers.79.self_attn.k_proj.weight": "pytorch_model-00014-of-00015.bin",
784
+ "model.layers.79.self_attn.o_proj.weight": "pytorch_model-00014-of-00015.bin",
785
+ "model.layers.79.self_attn.q_proj.weight": "pytorch_model-00014-of-00015.bin",
786
+ "model.layers.79.self_attn.rotary_emb.inv_freq": "pytorch_model-00014-of-00015.bin",
787
+ "model.layers.79.self_attn.v_proj.weight": "pytorch_model-00014-of-00015.bin",
788
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00002-of-00015.bin",
789
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00002-of-00015.bin",
790
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00002-of-00015.bin",
791
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00002-of-00015.bin",
792
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00002-of-00015.bin",
793
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00002-of-00015.bin",
794
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00002-of-00015.bin",
795
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00002-of-00015.bin",
796
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00015.bin",
797
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00002-of-00015.bin",
798
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00002-of-00015.bin",
799
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00002-of-00015.bin",
800
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00002-of-00015.bin",
801
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00002-of-00015.bin",
802
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00002-of-00015.bin",
803
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00002-of-00015.bin",
804
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00002-of-00015.bin",
805
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00002-of-00015.bin",
806
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00015.bin",
807
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00002-of-00015.bin",
808
+ "model.norm.weight": "pytorch_model-00014-of-00015.bin"
809
+ }
810
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "legacy": false,
22
+ "model_max_length": 1000000000000000019884624838656,
23
+ "pad_token": null,
24
+ "sp_model_kwargs": {},
25
+ "tokenizer_class": "LlamaTokenizer",
26
+ "unk_token": {
27
+ "__type": "AddedToken",
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ }
34
+ }
trainer_state.json ADDED
@@ -0,0 +1,688 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.6470588235294117,
5
+ "global_step": 1120,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.01,
12
+ "learning_rate": 3.4948500216800934e-06,
13
+ "loss": 0.6941,
14
+ "step": 10
15
+ },
16
+ {
17
+ "epoch": 0.03,
18
+ "learning_rate": 5.730640178391189e-06,
19
+ "loss": 0.5573,
20
+ "step": 20
21
+ },
22
+ {
23
+ "epoch": 0.04,
24
+ "learning_rate": 6.90105620855803e-06,
25
+ "loss": 0.5586,
26
+ "step": 30
27
+ },
28
+ {
29
+ "epoch": 0.06,
30
+ "learning_rate": 7.657394585211274e-06,
31
+ "loss": 0.5574,
32
+ "step": 40
33
+ },
34
+ {
35
+ "epoch": 0.07,
36
+ "learning_rate": 8.217263382430936e-06,
37
+ "loss": 0.5588,
38
+ "step": 50
39
+ },
40
+ {
41
+ "epoch": 0.09,
42
+ "learning_rate": 8.661968799114844e-06,
43
+ "loss": 0.5516,
44
+ "step": 60
45
+ },
46
+ {
47
+ "epoch": 0.1,
48
+ "learning_rate": 9.030899869919434e-06,
49
+ "loss": 0.5443,
50
+ "step": 70
51
+ },
52
+ {
53
+ "epoch": 0.12,
54
+ "learning_rate": 9.346158598654881e-06,
55
+ "loss": 0.5404,
56
+ "step": 80
57
+ },
58
+ {
59
+ "epoch": 0.13,
60
+ "learning_rate": 9.621396430309407e-06,
61
+ "loss": 0.5439,
62
+ "step": 90
63
+ },
64
+ {
65
+ "epoch": 0.15,
66
+ "learning_rate": 9.865639267998493e-06,
67
+ "loss": 0.5335,
68
+ "step": 100
69
+ },
70
+ {
71
+ "epoch": 0.16,
72
+ "learning_rate": 1e-05,
73
+ "loss": 0.5398,
74
+ "step": 110
75
+ },
76
+ {
77
+ "epoch": 0.18,
78
+ "learning_rate": 1e-05,
79
+ "loss": 0.5516,
80
+ "step": 120
81
+ },
82
+ {
83
+ "epoch": 0.19,
84
+ "learning_rate": 1e-05,
85
+ "loss": 0.5362,
86
+ "step": 130
87
+ },
88
+ {
89
+ "epoch": 0.21,
90
+ "learning_rate": 1e-05,
91
+ "loss": 0.5447,
92
+ "step": 140
93
+ },
94
+ {
95
+ "epoch": 0.22,
96
+ "learning_rate": 1e-05,
97
+ "loss": 0.5404,
98
+ "step": 150
99
+ },
100
+ {
101
+ "epoch": 0.24,
102
+ "learning_rate": 1e-05,
103
+ "loss": 0.5402,
104
+ "step": 160
105
+ },
106
+ {
107
+ "epoch": 0.25,
108
+ "learning_rate": 1e-05,
109
+ "loss": 0.53,
110
+ "step": 170
111
+ },
112
+ {
113
+ "epoch": 0.26,
114
+ "learning_rate": 1e-05,
115
+ "loss": 0.5221,
116
+ "step": 180
117
+ },
118
+ {
119
+ "epoch": 0.28,
120
+ "learning_rate": 1e-05,
121
+ "loss": 0.5306,
122
+ "step": 190
123
+ },
124
+ {
125
+ "epoch": 0.29,
126
+ "learning_rate": 1e-05,
127
+ "loss": 0.5335,
128
+ "step": 200
129
+ },
130
+ {
131
+ "epoch": 0.31,
132
+ "learning_rate": 1e-05,
133
+ "loss": 0.5428,
134
+ "step": 210
135
+ },
136
+ {
137
+ "epoch": 0.32,
138
+ "learning_rate": 1e-05,
139
+ "loss": 0.5282,
140
+ "step": 220
141
+ },
142
+ {
143
+ "epoch": 0.34,
144
+ "learning_rate": 1e-05,
145
+ "loss": 0.5374,
146
+ "step": 230
147
+ },
148
+ {
149
+ "epoch": 0.35,
150
+ "learning_rate": 1e-05,
151
+ "loss": 0.535,
152
+ "step": 240
153
+ },
154
+ {
155
+ "epoch": 0.37,
156
+ "learning_rate": 1e-05,
157
+ "loss": 0.5187,
158
+ "step": 250
159
+ },
160
+ {
161
+ "epoch": 0.38,
162
+ "learning_rate": 1e-05,
163
+ "loss": 0.525,
164
+ "step": 260
165
+ },
166
+ {
167
+ "epoch": 0.4,
168
+ "learning_rate": 1e-05,
169
+ "loss": 0.5341,
170
+ "step": 270
171
+ },
172
+ {
173
+ "epoch": 0.41,
174
+ "learning_rate": 1e-05,
175
+ "loss": 0.5326,
176
+ "step": 280
177
+ },
178
+ {
179
+ "epoch": 0.43,
180
+ "learning_rate": 1e-05,
181
+ "loss": 0.5321,
182
+ "step": 290
183
+ },
184
+ {
185
+ "epoch": 0.44,
186
+ "learning_rate": 1e-05,
187
+ "loss": 0.5209,
188
+ "step": 300
189
+ },
190
+ {
191
+ "epoch": 0.46,
192
+ "learning_rate": 1e-05,
193
+ "loss": 0.5253,
194
+ "step": 310
195
+ },
196
+ {
197
+ "epoch": 0.47,
198
+ "learning_rate": 1e-05,
199
+ "loss": 0.5175,
200
+ "step": 320
201
+ },
202
+ {
203
+ "epoch": 0.49,
204
+ "learning_rate": 1e-05,
205
+ "loss": 0.5299,
206
+ "step": 330
207
+ },
208
+ {
209
+ "epoch": 0.5,
210
+ "learning_rate": 1e-05,
211
+ "loss": 0.5225,
212
+ "step": 340
213
+ },
214
+ {
215
+ "epoch": 0.51,
216
+ "learning_rate": 1e-05,
217
+ "loss": 0.5239,
218
+ "step": 350
219
+ },
220
+ {
221
+ "epoch": 0.53,
222
+ "learning_rate": 1e-05,
223
+ "loss": 0.528,
224
+ "step": 360
225
+ },
226
+ {
227
+ "epoch": 0.54,
228
+ "learning_rate": 1e-05,
229
+ "loss": 0.5219,
230
+ "step": 370
231
+ },
232
+ {
233
+ "epoch": 0.56,
234
+ "learning_rate": 1e-05,
235
+ "loss": 0.5152,
236
+ "step": 380
237
+ },
238
+ {
239
+ "epoch": 0.57,
240
+ "learning_rate": 1e-05,
241
+ "loss": 0.5011,
242
+ "step": 390
243
+ },
244
+ {
245
+ "epoch": 0.59,
246
+ "learning_rate": 1e-05,
247
+ "loss": 0.5155,
248
+ "step": 400
249
+ },
250
+ {
251
+ "epoch": 0.6,
252
+ "learning_rate": 1e-05,
253
+ "loss": 0.5152,
254
+ "step": 410
255
+ },
256
+ {
257
+ "epoch": 0.62,
258
+ "learning_rate": 1e-05,
259
+ "loss": 0.5204,
260
+ "step": 420
261
+ },
262
+ {
263
+ "epoch": 0.63,
264
+ "learning_rate": 1e-05,
265
+ "loss": 0.5122,
266
+ "step": 430
267
+ },
268
+ {
269
+ "epoch": 0.65,
270
+ "learning_rate": 1e-05,
271
+ "loss": 0.5144,
272
+ "step": 440
273
+ },
274
+ {
275
+ "epoch": 0.66,
276
+ "learning_rate": 1e-05,
277
+ "loss": 0.5167,
278
+ "step": 450
279
+ },
280
+ {
281
+ "epoch": 0.68,
282
+ "learning_rate": 1e-05,
283
+ "loss": 0.5061,
284
+ "step": 460
285
+ },
286
+ {
287
+ "epoch": 0.69,
288
+ "learning_rate": 1e-05,
289
+ "loss": 0.5327,
290
+ "step": 470
291
+ },
292
+ {
293
+ "epoch": 0.71,
294
+ "learning_rate": 1e-05,
295
+ "loss": 0.5233,
296
+ "step": 480
297
+ },
298
+ {
299
+ "epoch": 0.72,
300
+ "learning_rate": 1e-05,
301
+ "loss": 0.5192,
302
+ "step": 490
303
+ },
304
+ {
305
+ "epoch": 0.74,
306
+ "learning_rate": 1e-05,
307
+ "loss": 0.5052,
308
+ "step": 500
309
+ },
310
+ {
311
+ "epoch": 0.75,
312
+ "learning_rate": 1e-05,
313
+ "loss": 0.5191,
314
+ "step": 510
315
+ },
316
+ {
317
+ "epoch": 0.76,
318
+ "learning_rate": 1e-05,
319
+ "loss": 0.5246,
320
+ "step": 520
321
+ },
322
+ {
323
+ "epoch": 0.78,
324
+ "learning_rate": 1e-05,
325
+ "loss": 0.5121,
326
+ "step": 530
327
+ },
328
+ {
329
+ "epoch": 0.79,
330
+ "learning_rate": 1e-05,
331
+ "loss": 0.5094,
332
+ "step": 540
333
+ },
334
+ {
335
+ "epoch": 0.81,
336
+ "learning_rate": 1e-05,
337
+ "loss": 0.5108,
338
+ "step": 550
339
+ },
340
+ {
341
+ "epoch": 0.82,
342
+ "learning_rate": 1e-05,
343
+ "loss": 0.5124,
344
+ "step": 560
345
+ },
346
+ {
347
+ "epoch": 0.84,
348
+ "learning_rate": 1e-05,
349
+ "loss": 0.5159,
350
+ "step": 570
351
+ },
352
+ {
353
+ "epoch": 0.85,
354
+ "learning_rate": 1e-05,
355
+ "loss": 0.5095,
356
+ "step": 580
357
+ },
358
+ {
359
+ "epoch": 0.87,
360
+ "learning_rate": 1e-05,
361
+ "loss": 0.5181,
362
+ "step": 590
363
+ },
364
+ {
365
+ "epoch": 0.88,
366
+ "learning_rate": 1e-05,
367
+ "loss": 0.517,
368
+ "step": 600
369
+ },
370
+ {
371
+ "epoch": 0.9,
372
+ "learning_rate": 1e-05,
373
+ "loss": 0.492,
374
+ "step": 610
375
+ },
376
+ {
377
+ "epoch": 0.91,
378
+ "learning_rate": 1e-05,
379
+ "loss": 0.5101,
380
+ "step": 620
381
+ },
382
+ {
383
+ "epoch": 0.93,
384
+ "learning_rate": 1e-05,
385
+ "loss": 0.5058,
386
+ "step": 630
387
+ },
388
+ {
389
+ "epoch": 0.94,
390
+ "learning_rate": 1e-05,
391
+ "loss": 0.5045,
392
+ "step": 640
393
+ },
394
+ {
395
+ "epoch": 0.96,
396
+ "learning_rate": 1e-05,
397
+ "loss": 0.5077,
398
+ "step": 650
399
+ },
400
+ {
401
+ "epoch": 0.97,
402
+ "learning_rate": 1e-05,
403
+ "loss": 0.51,
404
+ "step": 660
405
+ },
406
+ {
407
+ "epoch": 0.99,
408
+ "learning_rate": 1e-05,
409
+ "loss": 0.5128,
410
+ "step": 670
411
+ },
412
+ {
413
+ "epoch": 1.0,
414
+ "learning_rate": 1e-05,
415
+ "loss": 0.5118,
416
+ "step": 680
417
+ },
418
+ {
419
+ "epoch": 1.01,
420
+ "learning_rate": 1e-05,
421
+ "loss": 0.3543,
422
+ "step": 690
423
+ },
424
+ {
425
+ "epoch": 1.03,
426
+ "learning_rate": 1e-05,
427
+ "loss": 0.3402,
428
+ "step": 700
429
+ },
430
+ {
431
+ "epoch": 1.04,
432
+ "learning_rate": 1e-05,
433
+ "loss": 0.3482,
434
+ "step": 710
435
+ },
436
+ {
437
+ "epoch": 1.06,
438
+ "learning_rate": 1e-05,
439
+ "loss": 0.3442,
440
+ "step": 720
441
+ },
442
+ {
443
+ "epoch": 1.07,
444
+ "learning_rate": 1e-05,
445
+ "loss": 0.3329,
446
+ "step": 730
447
+ },
448
+ {
449
+ "epoch": 1.09,
450
+ "learning_rate": 1e-05,
451
+ "loss": 0.3335,
452
+ "step": 740
453
+ },
454
+ {
455
+ "epoch": 1.1,
456
+ "learning_rate": 1e-05,
457
+ "loss": 0.3448,
458
+ "step": 750
459
+ },
460
+ {
461
+ "epoch": 1.12,
462
+ "learning_rate": 1e-05,
463
+ "loss": 0.3451,
464
+ "step": 760
465
+ },
466
+ {
467
+ "epoch": 1.13,
468
+ "learning_rate": 1e-05,
469
+ "loss": 0.3354,
470
+ "step": 770
471
+ },
472
+ {
473
+ "epoch": 1.15,
474
+ "learning_rate": 1e-05,
475
+ "loss": 0.3412,
476
+ "step": 780
477
+ },
478
+ {
479
+ "epoch": 1.16,
480
+ "learning_rate": 1e-05,
481
+ "loss": 0.343,
482
+ "step": 790
483
+ },
484
+ {
485
+ "epoch": 1.18,
486
+ "learning_rate": 1e-05,
487
+ "loss": 0.3463,
488
+ "step": 800
489
+ },
490
+ {
491
+ "epoch": 1.19,
492
+ "learning_rate": 1e-05,
493
+ "loss": 0.3661,
494
+ "step": 810
495
+ },
496
+ {
497
+ "epoch": 1.21,
498
+ "learning_rate": 1e-05,
499
+ "loss": 0.3378,
500
+ "step": 820
501
+ },
502
+ {
503
+ "epoch": 1.22,
504
+ "learning_rate": 1e-05,
505
+ "loss": 0.3375,
506
+ "step": 830
507
+ },
508
+ {
509
+ "epoch": 1.24,
510
+ "learning_rate": 1e-05,
511
+ "loss": 0.3402,
512
+ "step": 840
513
+ },
514
+ {
515
+ "epoch": 1.25,
516
+ "learning_rate": 1e-05,
517
+ "loss": 0.3529,
518
+ "step": 850
519
+ },
520
+ {
521
+ "epoch": 1.26,
522
+ "learning_rate": 1e-05,
523
+ "loss": 0.3499,
524
+ "step": 860
525
+ },
526
+ {
527
+ "epoch": 1.28,
528
+ "learning_rate": 1e-05,
529
+ "loss": 0.3454,
530
+ "step": 870
531
+ },
532
+ {
533
+ "epoch": 1.29,
534
+ "learning_rate": 1e-05,
535
+ "loss": 0.3444,
536
+ "step": 880
537
+ },
538
+ {
539
+ "epoch": 1.31,
540
+ "learning_rate": 1e-05,
541
+ "loss": 0.3424,
542
+ "step": 890
543
+ },
544
+ {
545
+ "epoch": 1.32,
546
+ "learning_rate": 1e-05,
547
+ "loss": 0.3508,
548
+ "step": 900
549
+ },
550
+ {
551
+ "epoch": 1.34,
552
+ "learning_rate": 1e-05,
553
+ "loss": 0.3458,
554
+ "step": 910
555
+ },
556
+ {
557
+ "epoch": 1.35,
558
+ "learning_rate": 1e-05,
559
+ "loss": 0.3442,
560
+ "step": 920
561
+ },
562
+ {
563
+ "epoch": 1.37,
564
+ "learning_rate": 1e-05,
565
+ "loss": 0.3456,
566
+ "step": 930
567
+ },
568
+ {
569
+ "epoch": 1.38,
570
+ "learning_rate": 1e-05,
571
+ "loss": 0.3437,
572
+ "step": 940
573
+ },
574
+ {
575
+ "epoch": 1.4,
576
+ "learning_rate": 1e-05,
577
+ "loss": 0.3477,
578
+ "step": 950
579
+ },
580
+ {
581
+ "epoch": 1.41,
582
+ "learning_rate": 1e-05,
583
+ "loss": 0.3514,
584
+ "step": 960
585
+ },
586
+ {
587
+ "epoch": 1.43,
588
+ "learning_rate": 1e-05,
589
+ "loss": 0.3394,
590
+ "step": 970
591
+ },
592
+ {
593
+ "epoch": 1.44,
594
+ "learning_rate": 1e-05,
595
+ "loss": 0.3499,
596
+ "step": 980
597
+ },
598
+ {
599
+ "epoch": 1.46,
600
+ "learning_rate": 1e-05,
601
+ "loss": 0.3474,
602
+ "step": 990
603
+ },
604
+ {
605
+ "epoch": 1.47,
606
+ "learning_rate": 1e-05,
607
+ "loss": 0.3549,
608
+ "step": 1000
609
+ },
610
+ {
611
+ "epoch": 1.49,
612
+ "learning_rate": 1e-05,
613
+ "loss": 0.3483,
614
+ "step": 1010
615
+ },
616
+ {
617
+ "epoch": 1.5,
618
+ "learning_rate": 1e-05,
619
+ "loss": 0.3503,
620
+ "step": 1020
621
+ },
622
+ {
623
+ "epoch": 1.51,
624
+ "learning_rate": 1e-05,
625
+ "loss": 0.3493,
626
+ "step": 1030
627
+ },
628
+ {
629
+ "epoch": 1.53,
630
+ "learning_rate": 1e-05,
631
+ "loss": 0.349,
632
+ "step": 1040
633
+ },
634
+ {
635
+ "epoch": 1.54,
636
+ "learning_rate": 1e-05,
637
+ "loss": 0.3487,
638
+ "step": 1050
639
+ },
640
+ {
641
+ "epoch": 1.56,
642
+ "learning_rate": 1e-05,
643
+ "loss": 0.3472,
644
+ "step": 1060
645
+ },
646
+ {
647
+ "epoch": 1.57,
648
+ "learning_rate": 1e-05,
649
+ "loss": 0.349,
650
+ "step": 1070
651
+ },
652
+ {
653
+ "epoch": 1.59,
654
+ "learning_rate": 1e-05,
655
+ "loss": 0.356,
656
+ "step": 1080
657
+ },
658
+ {
659
+ "epoch": 1.6,
660
+ "learning_rate": 1e-05,
661
+ "loss": 0.3484,
662
+ "step": 1090
663
+ },
664
+ {
665
+ "epoch": 1.62,
666
+ "learning_rate": 1e-05,
667
+ "loss": 0.3471,
668
+ "step": 1100
669
+ },
670
+ {
671
+ "epoch": 1.63,
672
+ "learning_rate": 1e-05,
673
+ "loss": 0.3517,
674
+ "step": 1110
675
+ },
676
+ {
677
+ "epoch": 1.65,
678
+ "learning_rate": 1e-05,
679
+ "loss": 0.3445,
680
+ "step": 1120
681
+ }
682
+ ],
683
+ "max_steps": 3400,
684
+ "num_train_epochs": 5,
685
+ "total_flos": 1456488892334080.0,
686
+ "trial_name": null,
687
+ "trial_params": null
688
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79cb958fb47e0cd758a3afe201afe18fe154b2d0d7e83839af1c3e5423c62928
3
+ size 6011
zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)