pedrobergaglio commited on
Commit
354d40f
·
1 Parent(s): 9e1a831

Model save

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/MiniLM-L12-H384-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - f1
8
+ model-index:
9
+ - name: minilm-finetuned-seasons
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # minilm-finetuned-seasons
17
+
18
+ This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.2437
21
+ - F1: 0.9183
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 64
42
+ - eval_batch_size: 64
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 5
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | F1 |
52
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
53
+ | 0.362 | 1.0 | 625 | 0.3125 | 0.8951 |
54
+ | 0.3002 | 2.0 | 1250 | 0.2847 | 0.8878 |
55
+ | 0.2846 | 3.0 | 1875 | 0.2573 | 0.9146 |
56
+ | 0.263 | 4.0 | 2500 | 0.2520 | 0.9121 |
57
+ | 0.2463 | 5.0 | 3125 | 0.2437 | 0.9183 |
58
+
59
+
60
+ ### Framework versions
61
+
62
+ - Transformers 4.35.2
63
+ - Pytorch 2.1.0+cu118
64
+ - Datasets 2.15.0
65
+ - Tokenizers 0.15.0