File size: 1,909 Bytes
53dd5d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
<!-- ---
base_model: /teamspace/studios/this_studio/output/sft_merge
library_name: peft
license: other
tags:
- llama-factory
- lora
- unsloth
- generated_from_trainer
model-index:
- name: Mistral_End
  results: []
--- -->

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Mistral_End

This model is a fine-tuned version of [/teamspace/studios/this_studio/output/sft_merge](https://huggingface.co//teamspace/studios/this_studio/output/sft_merge) on the WordProblems_SFT_LLama_End dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0767

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 2.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.0893        | 0.2339 | 500  | 0.0972          |
| 0.0753        | 0.4679 | 1000 | 0.0879          |
| 0.071         | 0.7018 | 1500 | 0.0841          |
| 0.0678        | 0.9358 | 2000 | 0.0813          |
| 0.0697        | 1.1697 | 2500 | 0.0799          |
| 0.0553        | 1.4037 | 3000 | 0.0783          |
| 0.057         | 1.6376 | 3500 | 0.0772          |
| 0.0599        | 1.8716 | 4000 | 0.0767          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.43.4
- Pytorch 2.3.0
- Datasets 2.20.0
- Tokenizers 0.19.1