perceptron-soup commited on
Commit
2b81603
·
verified ·
1 Parent(s): feca653

End of training

Browse files
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: microsoft/layoutlm-base-uncased
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - funsd
9
+ model-index:
10
+ - name: layoutlm-funsd
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # layoutlm-funsd
18
+
19
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.7033
22
+ - Answer: {'precision': 0.7135016465422612, 'recall': 0.8034610630407911, 'f1': 0.7558139534883722, 'number': 809}
23
+ - Header: {'precision': 0.34959349593495936, 'recall': 0.36134453781512604, 'f1': 0.35537190082644626, 'number': 119}
24
+ - Question: {'precision': 0.7895204262877442, 'recall': 0.8347417840375587, 'f1': 0.8115015974440895, 'number': 1065}
25
+ - Overall Precision: 0.7324
26
+ - Overall Recall: 0.7938
27
+ - Overall F1: 0.7619
28
+ - Overall Accuracy: 0.8096
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 16
49
+ - eval_batch_size: 8
50
+ - seed: 42
51
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 15
54
+ - mixed_precision_training: Native AMP
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
59
+ |:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
60
+ | 1.7852 | 1.0 | 10 | 1.6133 | {'precision': 0.0075, 'recall': 0.003708281829419036, 'f1': 0.004962779156327543, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.27348066298342544, 'recall': 0.09295774647887324, 'f1': 0.13875262789067977, 'number': 1065} | 0.1339 | 0.0512 | 0.0740 | 0.3219 |
61
+ | 1.4748 | 2.0 | 20 | 1.2897 | {'precision': 0.13947696139476962, 'recall': 0.138442521631644, 'f1': 0.13895781637717122, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4375, 'recall': 0.5126760563380282, 'f1': 0.4721141374837873, 'number': 1065} | 0.3208 | 0.3302 | 0.3254 | 0.5949 |
62
+ | 1.1297 | 3.0 | 30 | 0.9650 | {'precision': 0.4776931447225245, 'recall': 0.5426452410383189, 'f1': 0.5081018518518519, 'number': 809} | {'precision': 0.14285714285714285, 'recall': 0.025210084033613446, 'f1': 0.04285714285714286, 'number': 119} | {'precision': 0.5609561752988048, 'recall': 0.6610328638497652, 'f1': 0.606896551724138, 'number': 1065} | 0.5221 | 0.5750 | 0.5473 | 0.7046 |
63
+ | 0.8686 | 4.0 | 40 | 0.7908 | {'precision': 0.6090534979423868, 'recall': 0.7317676143386898, 'f1': 0.664795058955643, 'number': 809} | {'precision': 0.17543859649122806, 'recall': 0.08403361344537816, 'f1': 0.11363636363636363, 'number': 119} | {'precision': 0.66431718061674, 'recall': 0.707981220657277, 'f1': 0.6854545454545454, 'number': 1065} | 0.6266 | 0.6804 | 0.6524 | 0.7606 |
64
+ | 0.688 | 5.0 | 50 | 0.7202 | {'precision': 0.6440677966101694, 'recall': 0.7515451174289246, 'f1': 0.6936679977181973, 'number': 809} | {'precision': 0.345679012345679, 'recall': 0.23529411764705882, 'f1': 0.27999999999999997, 'number': 119} | {'precision': 0.6864197530864198, 'recall': 0.7830985915492957, 'f1': 0.7315789473684212, 'number': 1065} | 0.6562 | 0.7376 | 0.6945 | 0.7799 |
65
+ | 0.5806 | 6.0 | 60 | 0.6899 | {'precision': 0.6547368421052632, 'recall': 0.7688504326328801, 'f1': 0.7072200113700967, 'number': 809} | {'precision': 0.3068181818181818, 'recall': 0.226890756302521, 'f1': 0.2608695652173913, 'number': 119} | {'precision': 0.723441615452151, 'recall': 0.7737089201877935, 'f1': 0.7477313974591652, 'number': 1065} | 0.6766 | 0.7391 | 0.7065 | 0.7841 |
66
+ | 0.4975 | 7.0 | 70 | 0.6633 | {'precision': 0.6722689075630253, 'recall': 0.7911001236093943, 'f1': 0.7268597387847815, 'number': 809} | {'precision': 0.30434782608695654, 'recall': 0.23529411764705882, 'f1': 0.2654028436018957, 'number': 119} | {'precision': 0.7429577464788732, 'recall': 0.7924882629107981, 'f1': 0.7669241253975465, 'number': 1065} | 0.6936 | 0.7587 | 0.7247 | 0.7969 |
67
+ | 0.4425 | 8.0 | 80 | 0.6850 | {'precision': 0.6790123456790124, 'recall': 0.8158220024721878, 'f1': 0.7411566535654126, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.29411764705882354, 'f1': 0.3125, 'number': 119} | {'precision': 0.7445319335083115, 'recall': 0.7990610328638498, 'f1': 0.7708333333333334, 'number': 1065} | 0.6964 | 0.7757 | 0.7339 | 0.7933 |
68
+ | 0.3867 | 9.0 | 90 | 0.6700 | {'precision': 0.7067254685777288, 'recall': 0.792336217552534, 'f1': 0.7470862470862472, 'number': 809} | {'precision': 0.3181818181818182, 'recall': 0.29411764705882354, 'f1': 0.3056768558951965, 'number': 119} | {'precision': 0.7567099567099567, 'recall': 0.8206572769953052, 'f1': 0.7873873873873873, 'number': 1065} | 0.7136 | 0.7777 | 0.7443 | 0.8031 |
69
+ | 0.3746 | 10.0 | 100 | 0.6724 | {'precision': 0.7029702970297029, 'recall': 0.7898640296662547, 'f1': 0.7438882421420255, 'number': 809} | {'precision': 0.3425925925925926, 'recall': 0.31092436974789917, 'f1': 0.3259911894273128, 'number': 119} | {'precision': 0.7665505226480837, 'recall': 0.8262910798122066, 'f1': 0.7953004970628107, 'number': 1065} | 0.7187 | 0.7807 | 0.7484 | 0.8095 |
70
+ | 0.3198 | 11.0 | 110 | 0.6931 | {'precision': 0.7155266015200868, 'recall': 0.8145859085290482, 'f1': 0.761849710982659, 'number': 809} | {'precision': 0.30952380952380953, 'recall': 0.3277310924369748, 'f1': 0.31836734693877555, 'number': 119} | {'precision': 0.7760279965004374, 'recall': 0.8328638497652582, 'f1': 0.8034420289855072, 'number': 1065} | 0.7237 | 0.7953 | 0.7578 | 0.8042 |
71
+ | 0.3041 | 12.0 | 120 | 0.6943 | {'precision': 0.7182628062360802, 'recall': 0.7972805933250927, 'f1': 0.7557117750439368, 'number': 809} | {'precision': 0.33884297520661155, 'recall': 0.3445378151260504, 'f1': 0.3416666666666667, 'number': 119} | {'precision': 0.780053428317008, 'recall': 0.8225352112676056, 'f1': 0.8007312614259597, 'number': 1065} | 0.7292 | 0.7837 | 0.7555 | 0.8068 |
72
+ | 0.2828 | 13.0 | 130 | 0.7021 | {'precision': 0.7139737991266376, 'recall': 0.8084054388133498, 'f1': 0.7582608695652174, 'number': 809} | {'precision': 0.358974358974359, 'recall': 0.35294117647058826, 'f1': 0.35593220338983056, 'number': 119} | {'precision': 0.8, 'recall': 0.8413145539906103, 'f1': 0.820137299771167, 'number': 1065} | 0.7394 | 0.7988 | 0.7680 | 0.8069 |
73
+ | 0.2647 | 14.0 | 140 | 0.7052 | {'precision': 0.7184035476718403, 'recall': 0.8009888751545118, 'f1': 0.7574517825832847, 'number': 809} | {'precision': 0.3282442748091603, 'recall': 0.36134453781512604, 'f1': 0.344, 'number': 119} | {'precision': 0.7872340425531915, 'recall': 0.8338028169014085, 'f1': 0.8098495212038304, 'number': 1065} | 0.7307 | 0.7923 | 0.7602 | 0.8076 |
74
+ | 0.265 | 15.0 | 150 | 0.7033 | {'precision': 0.7135016465422612, 'recall': 0.8034610630407911, 'f1': 0.7558139534883722, 'number': 809} | {'precision': 0.34959349593495936, 'recall': 0.36134453781512604, 'f1': 0.35537190082644626, 'number': 119} | {'precision': 0.7895204262877442, 'recall': 0.8347417840375587, 'f1': 0.8115015974440895, 'number': 1065} | 0.7324 | 0.7938 | 0.7619 | 0.8096 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.46.3
80
+ - Pytorch 2.5.1+cu121
81
+ - Datasets 3.2.0
82
+ - Tokenizers 0.20.3
logs/events.out.tfevents.1733915093.f1e483e9661a.1957.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a57e2b678a90a2e9eb576aecf6973bad33c2cc2009dfcaac90ccb0faf80420f1
3
- size 14436
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c436552b3426c0abefa65cc901208b4bea43cf2f1a7295635a42b08b760fdeaa
3
+ size 16220