File size: 2,330 Bytes
9c54387
 
 
 
 
 
 
 
 
 
8ffcdd8
9c54387
 
 
 
 
 
 
 
 
 
 
 
 
4ebd0af
 
f15fd84
9c54387
0eba4cf
f15fd84
 
4ebd0af
9c54387
 
4ebd0af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c54387
 
 
 
4ebd0af
 
9c54387
4ebd0af
 
9c54387
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
language: 
 - fa
 - multilingual
thumbnail: "https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg"
tags:
- multiple-choice 
- wikibert
- persian 
- farsi 
pipeline_tag: text-classification
license: "CC BY-NC-SA 4.0"
datasets:
- parsinlu
metrics:
- accuracy
---

# Multiple-Choice Question Answering (مدل برای پاسخ به سوالات چهار جوابی)

This is a wikibert-based model for multiple-choice question answering. 
Here is an example of how you can run this model: 

```python 
from typing import List
import torch
from transformers import AutoConfig, AutoModelForMultipleChoice, AutoTokenizer

model_name = "persiannlp/wikibert-base-parsinlu-multiple-choice"
tokenizer = AutoTokenizer.from_pretrained(model_name)
config = AutoConfig.from_pretrained(model_name)
model = AutoModelForMultipleChoice.from_pretrained(model_name, config=config)


def run_model(question: str, candicates: List[str]):
    assert len(candicates) == 4, "you need four candidates"
    choices_inputs = []
    for c in candicates:
        text_a = ""  # empty context
        text_b = question + " " + c
        inputs = tokenizer(
            text_a,
            text_b,
            add_special_tokens=True,
            max_length=128,
            padding="max_length",
            truncation=True,
            return_overflowing_tokens=True,
        )
        choices_inputs.append(inputs)

    input_ids = torch.LongTensor([x["input_ids"] for x in choices_inputs])
    output = model(input_ids=input_ids)
    print(output)
    return output


run_model(question="وسیع ترین کشور جهان کدام است؟", candicates=["آمریکا", "کانادا", "روسیه", "چین"])
run_model(question="طامع یعنی ؟", candicates=["آزمند", "خوش شانس", "محتاج", "مطمئن"])
run_model(
    question="زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده ",
    candicates=["روز اول", "روز دوم", "روز سوم", "هیچکدام"])

```


For more details, visit this page: https://github.com/persiannlp/parsinlu/