File size: 12,189 Bytes
508087f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b612eb3
508087f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b612eb3
508087f
 
 
 
 
 
 
 
b612eb3
508087f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b612eb3
 
 
 
 
 
 
 
 
 
 
 
 
 
508087f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
"""
To train a GPT from sratch
"""
import argparse
import os
import time
import math
import pickle
from contextlib import nullcontext

import numpy as np
import torch
from torch.nn.parallel import DistributedDataParallel
from torch.distributed import init_process_group, destroy_process_group
import pynvml

from model import GPTConfig, GPT

parser = argparse.ArgumentParser(description="Load configuration file")
parser.add_argument('--config', type=str, required=True, help='Path to the configuration file')
args = parser.parse_args()

config_path = args.config
exec(open(config_path).read())

# -----Load all global variables for logging--------------------------------------------------------
config_keys = [k for k,v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))]
# exec(open(config_path).read()) # overrides from command line or config file
config = {k: globals()[k] for k in config_keys} 
# -----------------------------------------------------------------------------

def log_and_write(filename, message):
    with open(filename, 'a') as f:
        f.write(message + "\n")
    print(message)
    
log_and_write(log_dir,f'gradient_accumulation_steps: {gradient_accumulation_steps}, batch_size: {batch_size}, \nblock_size: {block_size}, \nn_layer: {n_layer}, n_head: {n_head}, n_embd: {n_embd}, dropout: {dropout}, bias: {bias}, \nlearning_rate: {learning_rate}, max_iters: {max_iters}, \nweight_decay: {weight_decay}, beta1: {beta1}, beta2: {beta2}, grad_clip: {grad_clip}, decay_lr: {decay_lr}, \nwarmup_iters: {warmup_iters}, lr_decay_iters: {lr_decay_iters}, \nmin_lr: {min_lr}, backend: {backend}, device: {device},\n dtype: {dtype}, compile: {compile}')
log_and_write(log_dir, f'meta_vocab_size: {meta_vocab_size}')
log_and_write(log_dir, f'training data: {data_dir}')

# -----------------------------------------------------------------------------


ddp = int(os.environ.get('RANK', -1)) != -1 # is this a ddp run?
if ddp:
    init_process_group(backend=backend)
    ddp_rank = int(os.environ['RANK'])
    ddp_local_rank = int(os.environ['LOCAL_RANK'])
    ddp_world_size = int(os.environ['WORLD_SIZE'])
    device = f'cuda:{ddp_local_rank}'
    torch.cuda.set_device(device)
    master_process = ddp_rank == 0 # this process will do logging, checkpointing etc.
    seed_offset = ddp_rank
    assert gradient_accumulation_steps % ddp_world_size == 0
    gradient_accumulation_steps //= ddp_world_size
else:
    master_process = True
    seed_offset = 0
    ddp_world_size = 1

tokens_per_iter = gradient_accumulation_steps * ddp_world_size * batch_size * block_size
print('ddp_world_size:',ddp_world_size)
print(f"tokens per iteration will be: {tokens_per_iter:,}")

pynvml.nvmlInit()
def print_gpu_memory_usage():
    handle = pynvml.nvmlDeviceGetHandleByIndex(0)
    info = pynvml.nvmlDeviceGetMemoryInfo(handle)
    print(f"Used: {info.used / 1024**2:.2f}MB/{info.total / 1024**2:.2f}MB ({info.used / info.total * 100:.2f}%)")

if master_process:
    os.makedirs(out_dir, exist_ok=True)
torch.manual_seed(1337 + seed_offset)
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast

ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)

# data loader
train_data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r')
val_data = np.memmap(os.path.join(data_dir, 'val.bin'), dtype=np.uint16, mode='r')
def get_batch(split):
    data = train_data if split == 'train' else val_data
    ix = torch.randint(len(data) - block_size, (batch_size,))
    x = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix])
    y = torch.stack([torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix])
    if device_type == 'cuda':
        # pin arrays x,y, which allows us to move them to GPU asynchronously (non_blocking=True)
        x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True)
    else:
        x, y = x.to(device), y.to(device)
    return x, y

iter_num = 0
best_val_loss = 1e9

# attempt to derive vocab_size from the dataset
meta_path = os.path.join(data_dir, 'meta.pkl')
if os.path.exists(meta_path):
    with open(meta_path, 'rb') as f:
        meta = pickle.load(f)
    meta_vocab_size = meta['vocab_size']
    print(f"found vocab_size = {meta_vocab_size}")

# model init
model_args = dict(n_layer=n_layer, n_head=n_head, n_embd=n_embd, block_size=block_size,
                  bias=bias, vocab_size=None, dropout=dropout) # start with model_args from command line
if init_from == 'scratch':
    # init a new model from scratch
    print("Initializing a new model from scratch")
    # determine the vocab size we'll use for from-scratch training
    if meta_vocab_size is None:
        print("defaulting to vocab_size of GPT-2 to 50304 (50257 rounded up for efficiency)")
    model_args['vocab_size'] = meta_vocab_size if meta_vocab_size is not None else 50304
    gptconf = GPTConfig(**model_args)
    model = GPT(gptconf)
elif init_from == 'resume':
    print(f"Resuming training from {out_dir}")
    # resume training from a checkpoint.
    checkpoint = torch.load(ckpt_path, map_location=device)
    checkpoint_model_args = checkpoint['model_args']
    # force these config attributes to be equal otherwise we can't even resume training
    # the rest of the attributes (e.g. dropout) can stay as desired from command line
    for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']:
        model_args[k] = checkpoint_model_args[k]
    # create the model
    gptconf = GPTConfig(**model_args)
    model = GPT(gptconf)
    state_dict = checkpoint['model']
    unwanted_prefix = '_orig_mod.'
    for k,v in list(state_dict.items()):
        if k.startswith(unwanted_prefix):
            state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
    model.load_state_dict(state_dict)
    iter_num = checkpoint['iter_num']
    best_val_loss = checkpoint['best_val_loss']
# crop down the model block size if desired, using model surgery
if block_size < model.config.block_size:
    model.crop_block_size(block_size)
    model_args['block_size'] = block_size # so that the checkpoint will have the right value
model.to(device)

# initialize a GradScaler. If enabled=False scaler is a no-op
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float32'))

# optimizer
optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1, beta2), device_type)
if init_from == 'resume':
    optimizer.load_state_dict(checkpoint['optimizer'])
checkpoint = None # free up memory

# compile the model
if compile:
    print("compiling the model... (takes a ~minute)")
    unoptimized_model = model
    model = torch.compile(model) # requires PyTorch 2.0

# wrap model into DDP container
if ddp:
    model = DistributedDataParallel(model, device_ids=[ddp_local_rank])

# helps estimate an arbitrarily accurate loss over either split using many batches
@torch.no_grad()
def estimate_loss():
    out = {}
    perplexities = {}
    model.eval()
    for split in ['train', 'val']:
        losses = torch.zeros(eval_iters)
        total_loss = 0
        for k in range(eval_iters):
            X, Y = get_batch(split)
            with ctx:
                logits, loss = model(X, Y)
            losses[k] = loss.item()
            total_loss += loss.item()
        avg_loss = losses.mean()
        out[split] = avg_loss
        perplexities[split] = torch.exp(avg_loss)
    model.train()
    return out, perplexities


# learning rate decay scheduler (cosine with warmup)
def get_lr(it):
    # 1) linear warmup for warmup_iters steps
    if it < warmup_iters:
        return learning_rate * it / warmup_iters
    # 2) if it > lr_decay_iters, return min learning rate
    if it > lr_decay_iters:
        return min_lr
    # 3) in between, use cosine decay down to min learning rate
    decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
    assert 0 <= decay_ratio <= 1
    coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1
    return min_lr + coeff * (learning_rate - min_lr)

# training loop
X, Y = get_batch('train') # fetch the very first batch
t0 = time.time()
local_iter_num = 0 # number of iterations in the lifetime of this process
raw_model = model.module if ddp else model # unwrap DDP container if needed
running_mfu = -1.0
while True:

    # determine and set the learning rate for this iteration
    lr = get_lr(iter_num) if decay_lr else learning_rate
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

    # evaluate the loss on train/val sets and write checkpoints
    if iter_num % eval_interval == 0 and master_process:
        losses, perplexities = estimate_loss()
        log_and_write(log_dir, f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f},train perplexity: {perplexities['train']:.4f}, val perplexity: {perplexities['val']:.4f}")
        if iter_num % 200 == 0:
            print_gpu_memory_usage()
        if always_save_checkpoint:
            if losses['val'] < best_val_loss or always_save_checkpoint:
                best_val_loss = losses['val']
                if iter_num > 0:
                    checkpoint = {
                        'model': raw_model.state_dict(),
                        'optimizer': optimizer.state_dict(),
                        'model_args': model_args,
                        'iter_num': iter_num,
                        'best_val_loss': best_val_loss,
                        'config': config,
                    }
                    log_and_write(log_dir, f"saving checkpoint to {out_dir}")
                    torch.save(checkpoint, os.path.join(out_dir, f'ckpt_{iter_num}.pt'))
    if iter_num == 0 and eval_only:
        break

    # forward backward update, with optional gradient accumulation to simulate larger batch size
    # and using the GradScaler if data type is float16
    for micro_step in range(gradient_accumulation_steps):
        if ddp:
            # in DDP training we only need to sync gradients at the last micro step.
            model.require_backward_grad_sync = (micro_step == gradient_accumulation_steps - 1)
        with ctx:
            logits, loss = model(X, Y)
            loss = loss / gradient_accumulation_steps # scale the loss to account for gradient accumulation
        # immediately async prefetch next batch while model is doing the forward pass on the GPU
        X, Y = get_batch('train')
        # backward pass, with gradient scaling if training in fp16
        scaler.scale(loss).backward()
    # clip the gradient
    if grad_clip != 0.0:
        scaler.unscale_(optimizer)
        torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
    # step the optimizer and scaler if training in fp16
    scaler.step(optimizer)
    scaler.update()
    # flush the gradients as soon as we can, no need for this memory anymore
    optimizer.zero_grad(set_to_none=True)

    # timing and logging
    t1 = time.time()
    dt = t1 - t0
    t0 = t1
    if iter_num % log_interval == 0 and master_process:
        # get loss as float. note: this is a CPU-GPU sync point
        # scale up to undo the division above, approximating the true total loss (exact would have been a sum)
        lossf = loss.item() * gradient_accumulation_steps
        if local_iter_num >= 5: # let the training loop settle a bit
            mfu = raw_model.estimate_mfu(batch_size * gradient_accumulation_steps, dt)
            running_mfu = mfu if running_mfu == -1.0 else 0.9*running_mfu + 0.1*mfu
        log_and_write(log_dir, f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms, lr {lr}, mfu {running_mfu*100:.2f}%")
    iter_num += 1
    local_iter_num += 1

    # termination conditions
    if iter_num > max_iters:
        break

if ddp:
    destroy_process_group()

pynvml.nvmlShutdown()