Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,231 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- philipp-zettl/qg-tydiqa_squad2
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
library_name: transformers
|
8 |
+
pipeline_tag: text2text-generation
|
9 |
+
widget:
|
10 |
+
- text: "context: The Hugging Face Hub is a
|
11 |
+
platform with over 350k models, 75k datasets, and 150k demo apps (Spaces),
|
12 |
+
all open source and publicly available, in an online platform where people
|
13 |
+
can easily collaborate and build ML together. The Hub works as a central
|
14 |
+
place where anyone can explore, experiment, collaborate, and build
|
15 |
+
technology with Machine Learning. Are you ready to join the path towards
|
16 |
+
open source Machine Learning? π€"
|
17 |
+
example_title: π€ Hub
|
18 |
+
- text: "context: π€ Datasets is a library
|
19 |
+
for easily accessing and sharing datasets for Audio, Computer Vision, and
|
20 |
+
Natural Language Processing (NLP) tasks. Load a dataset in a single line
|
21 |
+
of code, and use our powerful data processing methods to quickly get your
|
22 |
+
dataset ready for training in a deep learning model. Backed by the Apache
|
23 |
+
Arrow format, process large datasets with zero-copy reads without any
|
24 |
+
memory constraints for optimal speed and efficiency. We also feature a
|
25 |
+
deep integration with the Hugging Face Hub, allowing you to easily load
|
26 |
+
and share a dataset with the wider machine learning community. Find your
|
27 |
+
dataset today on the Hugging Face Hub, and take an in-depth look inside of
|
28 |
+
it with the live viewer."
|
29 |
+
example_title: π€ datasets
|
30 |
+
---
|
31 |
+
|
32 |
+
# Model Card for t5-small-qg
|
33 |
+
|
34 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
35 |
+
|
36 |
+
## Model Details
|
37 |
+
|
38 |
+
### Model Description
|
39 |
+
|
40 |
+
<!-- Provide a longer summary of what this model is. -->
|
41 |
+
This model was trained to generate questions out of a given context.
|
42 |
+
|
43 |
+
|
44 |
+
- **Developed by:** [philipp-zettl](https://huggingface.co/philipp-zettl)
|
45 |
+
- **Model type:** Transformer (T5)
|
46 |
+
- **Language(s) (NLP):** English
|
47 |
+
- **License:** M.I.T
|
48 |
+
- **Finetuned from model [optional]:** [google/flan-t5-small](https://huggingface.co/google/flan-t5-small)
|
49 |
+
|
50 |
+
### Model Sources [optional]
|
51 |
+
|
52 |
+
<!-- Provide the basic links for the model. -->
|
53 |
+
Fine-tune of the amazing [google/flan-t5-small](https://huggingface.co/google/flan-t5-small)
|
54 |
+
|
55 |
+
## Uses
|
56 |
+
|
57 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
58 |
+
It's intended to use the model to generate questions from given context.
|
59 |
+
The context should not exceed the model's _context_ length.
|
60 |
+
|
61 |
+
## Bias, Risks, and Limitations
|
62 |
+
|
63 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
64 |
+
|
65 |
+
No bias evaluation was performed on this model.
|
66 |
+
|
67 |
+
## How to Get Started with the Model
|
68 |
+
|
69 |
+
Use the code below to get started with the model.
|
70 |
+
|
71 |
+
```python
|
72 |
+
context = "This is a long text based of multiple concatenated paragraphs."
|
73 |
+
|
74 |
+
model_inputs = tokenizer([f"context: {context}"], max_length=512, padding=True, truncation=True)
|
75 |
+
input_ids = torch.tensor(model_inputs['input_ids']).to(device)
|
76 |
+
attention_mask = torch.tensor(model_inputs['attention_mask']).to(device)
|
77 |
+
with torch.no_grad():
|
78 |
+
sample_output = model.generate(input_ids[:1], max_length=85)
|
79 |
+
sample_output_text = tokenizer.decode(sample_output[0], skip_special_tokens=True)
|
80 |
+
input_text = tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
81 |
+
print(f"Sample Input:\n \"{input_text}\"\n\n")
|
82 |
+
print(f"Model Output: \"{sample_output_text}\"")
|
83 |
+
```
|
84 |
+
|
85 |
+
## Training Details
|
86 |
+
|
87 |
+
### Training Data
|
88 |
+
|
89 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
90 |
+
|
91 |
+
This model was trained on [philipp-zettl/qg-tydiqa_squad2](https://huggingface.co/datasets/philipp-zettl/qg-tydiqa_squad2).
|
92 |
+
|
93 |
+
The training data was collected by combining [philipp-zettl/tydiqa-task_2-english](https://huggingface.co/datasets/philipp-zettl/tydiqa-task_2-english) with [nvidia/ChatQA-Training-Data#squad2.0](https://huggingface.co/datasets/nvidia/ChatQA-Training-Data/viewer/squad2.0).
|
94 |
+
|
95 |
+
From each base dataset we selected the `context` and `question` attributes of each sample. Then joined them together into [philipp-zettl/qg-tydiqa_squad2](https://huggingface.co/datasets/philipp-zettl/qg-tydiqa_squad2).
|
96 |
+
|
97 |
+
### Training Procedure
|
98 |
+
|
99 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
100 |
+
Below you can find the full training pipeline used to achieve this fine-tune.
|
101 |
+
|
102 |
+
```python
|
103 |
+
import torch
|
104 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
105 |
+
|
106 |
+
# Base model (e.g., T5-large)
|
107 |
+
# https://huggingface.co/collections/google/flan-t5-release-65005c39e3201fff885e22fb
|
108 |
+
model_name = 'google/flan-t5-small'
|
109 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
110 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
111 |
+
|
112 |
+
# Move only the student model to GPU if available
|
113 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
114 |
+
model = model.to(device)
|
115 |
+
```
|
116 |
+
|
117 |
+
Load dataset
|
118 |
+
```
|
119 |
+
from datasets import load_dataset
|
120 |
+
|
121 |
+
# Load dataset
|
122 |
+
squad_dataset = load_dataset('philipp-zettl/qg-tydiqa_squad2')
|
123 |
+
|
124 |
+
# Split the dataset into training and validation
|
125 |
+
train_dataset = squad_dataset['train']
|
126 |
+
validation_dataset = squad_dataset['test']
|
127 |
+
```
|
128 |
+
|
129 |
+
Preprocessing: tokenize inputs and labels for faster training cycles, i.e. no need for tokenization during training anymore
|
130 |
+
```
|
131 |
+
def preprocess_batch(batch, tokenizer, max_input_length=512, max_output_length=128):
|
132 |
+
contexts = batch['context']
|
133 |
+
answers = batch['question']
|
134 |
+
|
135 |
+
inputs = [f"context: {c}" for c in contexts]
|
136 |
+
model_inputs = tokenizer(inputs, max_length=max_input_length, padding=True, truncation=True)
|
137 |
+
|
138 |
+
labels = tokenizer(answers, max_length=max_output_length, padding=True, truncation=True)
|
139 |
+
model_inputs['labels'] = labels['input_ids']
|
140 |
+
|
141 |
+
return model_inputs
|
142 |
+
|
143 |
+
# Tokenize the dataset
|
144 |
+
train_dataset = train_dataset.map(lambda batch: preprocess_batch(batch, tokenizer), batched=True)
|
145 |
+
validation_dataset = validation_dataset.map(lambda batch: preprocess_batch(batch, tokenizer), batched=True)
|
146 |
+
|
147 |
+
# Set format for PyTorch
|
148 |
+
train_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
149 |
+
validation_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
150 |
+
```
|
151 |
+
|
152 |
+
The train loop
|
153 |
+
```python
|
154 |
+
from tqdm import tqdm
|
155 |
+
from transformers import AdamW, DataCollatorForSeq2Seq
|
156 |
+
from torch.utils.data import DataLoader
|
157 |
+
from torch.utils.tensorboard import SummaryWriter
|
158 |
+
|
159 |
+
torch.cuda.empty_cache()
|
160 |
+
|
161 |
+
model.to(device)
|
162 |
+
|
163 |
+
# Training parameters
|
164 |
+
epochs = 3
|
165 |
+
learning_rate = 5e-5
|
166 |
+
temperature = 2.0
|
167 |
+
batch_size = 8
|
168 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
|
169 |
+
|
170 |
+
# Create a data collator for padding and batching
|
171 |
+
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model)
|
172 |
+
|
173 |
+
# Create DataLoaders with the data collator
|
174 |
+
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=data_collator)
|
175 |
+
validation_dataloader = DataLoader(validation_dataset, batch_size=batch_size, collate_fn=data_collator)
|
176 |
+
|
177 |
+
writer = SummaryWriter(comment='t5-small-qg')
|
178 |
+
|
179 |
+
print("Starting training...")
|
180 |
+
|
181 |
+
# Training loop
|
182 |
+
for epoch in range(epochs):
|
183 |
+
model.train()
|
184 |
+
total_loss = 0
|
185 |
+
print(f"Epoch {epoch+1}/{epochs}")
|
186 |
+
|
187 |
+
progress_bar = tqdm(train_dataloader, desc="Training", leave=False)
|
188 |
+
|
189 |
+
for step, batch in enumerate(progress_bar):
|
190 |
+
input_ids = batch['input_ids'].to(device)
|
191 |
+
attention_mask = batch['attention_mask'].to(device)
|
192 |
+
labels = batch['labels'].to(device)
|
193 |
+
|
194 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
|
195 |
+
logits = outputs.logits
|
196 |
+
|
197 |
+
# Calculate losses
|
198 |
+
loss = outputs.loss # Cross-entropy loss
|
199 |
+
writer.add_scalar("Loss/train", loss, step)
|
200 |
+
|
201 |
+
# Backpropagation
|
202 |
+
optimizer.zero_grad()
|
203 |
+
loss.backward()
|
204 |
+
optimizer.step()
|
205 |
+
|
206 |
+
total_loss += loss.item()
|
207 |
+
|
208 |
+
# Verbose logging
|
209 |
+
if step % 100 == 1 or step == len(train_dataloader) - 1:
|
210 |
+
progress_bar.set_postfix({
|
211 |
+
'step': step,
|
212 |
+
'loss': loss.item(),
|
213 |
+
})
|
214 |
+
|
215 |
+
# Generate a sample output from the student model
|
216 |
+
model.eval()
|
217 |
+
with torch.no_grad():
|
218 |
+
sample_output = model.generate(input_ids[:1], max_length=50)
|
219 |
+
sample_output_text = tokenizer.decode(sample_output[0], skip_special_tokens=True)
|
220 |
+
input_text = tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
221 |
+
writer.add_text(f"Sample Input", input_text, step)
|
222 |
+
writer.add_text(f"Sample Output", sample_output_text, step)
|
223 |
+
model.train()
|
224 |
+
|
225 |
+
avg_loss = total_loss / len(train_dataloader)
|
226 |
+
print(f"Epoch {epoch+1} completed. Average Loss: {avg_loss:.4f}")
|
227 |
+
writer.add_scalar("AVG Loss/train", avg_loss, epoch)
|
228 |
+
|
229 |
+
print("Training complete.")
|
230 |
+
writer.close()
|
231 |
+
```
|