gia / BaseModel.py
philivy's picture
Update BaseModel.py
afa2812 verified
import pandas as pd
from prophet import Prophet
from prophet.diagnostics import cross_validation
class GeoMagModel:
"""
A class for forecasting geomagnetic data using the Prophet model.
"""
def __init__(self, changepoint_prior_scale=0.1, weekly_seasonality=True):
"""
Initialize the GeoMagModel with Prophet configuration.
Args:
changepoint_prior_scale (float): Controls flexibility of changepoint detection.
weekly_seasonality (bool): Whether to include weekly seasonality.
"""
self.changepoint_prior_scale = changepoint_prior_scale
self.weekly_seasonality = weekly_seasonality
self.model = None
@staticmethod
def prepare_data(df):
"""
Prepare the DataFrame for Prophet by renaming columns.
Args:
df (pd.DataFrame): Input DataFrame with 'timestamp' and 'Dst' columns.
Returns:
pd.DataFrame: A DataFrame with 'ds' (timestamp) and 'y' (Dst) columns.
"""
if not {'timestamp', 'Dst'}.issubset(df.columns):
raise ValueError("DataFrame must contain 'timestamp' and 'Dst' columns.")
return df.rename(columns={'timestamp': 'ds', 'Dst': 'y'})
def train(self, df):
"""
Train the Prophet model using the provided DataFrame.
Args:
df (pd.DataFrame): DataFrame prepared for Prophet with 'ds' and 'y' columns.
"""
df = self.prepare_data(df)
self.model = Prophet(
interval_width=0.7,
changepoint_prior_scale=self.changepoint_prior_scale
)
if self.weekly_seasonality:
self.model.add_seasonality(name='weekly', period=7, fourier_order=5, prior_scale=10)
self.model.fit(df)
def forecast(self, periods=1, freq='H'):
"""
Generate future forecasts with the trained model.
Args:
periods (int): Number of future periods to forecast. Default is 1.
freq (str): Frequency of the forecast (e.g., 'H' for hours). Default is 'H'.
Returns:
pd.DataFrame: Forecast DataFrame with columns: 'ds', 'yhat', 'yhat_lower', 'yhat_upper'.
"""
if self.model is None:
raise ValueError("Model is not trained. Call train() before forecast().")
future_dates = self.model.make_future_dataframe(periods=periods, freq=freq)
forecast = self.model.predict(future_dates)
return forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']]
def cross_validate(self, initial='36 hours', period='12 hours', horizon='1 hours'):
"""
Perform cross-validation on the trained model.
Args:
initial (str): Initial training period for cross-validation.
period (str): Frequency of making predictions.
horizon (str): Forecast horizon for each prediction.
Returns:
pd.DataFrame: Cross-validation results with metrics.
"""
if self.model is None:
raise ValueError("Model is not trained. Call train() before cross_validate().")
return cross_validation(self.model, initial=initial, period=period, horizon=horizon)
# Example Usage:
# geomag = GeoMagModel()
# df = pd.read_csv("geomagnetic_data.csv")
# geomag.train(df)
# forecast = geomag.forecast(periods=24, freq='H')
# print(forecast)