|
from typing import Dict, List, Any |
|
from optimum.onnxruntime import ORTModelForFeatureExtraction |
|
from transformers import AutoTokenizer |
|
import torch.nn.functional as F |
|
import torch |
|
|
|
|
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
self.model = ORTModelForFeatureExtraction.from_pretrained(path, file_name="model-quantized.onnx") |
|
self.tokenizer = AutoTokenizer.from_pretrained(path) |
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the input data and the parameters for the inference. |
|
Return: |
|
A :obj:`list`:. The list contains the embeddings of the inference inputs |
|
""" |
|
inputs = data.get("inputs", data) |
|
|
|
|
|
encoded_inputs = self.tokenizer(inputs, padding=True, truncation=True, return_tensors='pt') |
|
|
|
outputs = self.model(**encoded_inputs) |
|
|
|
sentence_embeddings = mean_pooling(outputs, encoded_inputs['attention_mask']) |
|
|
|
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) |
|
|
|
return {"embeddings": sentence_embeddings.tolist()} |
|
|