File size: 7,805 Bytes
5d88cba
7b7e662
0c82ac9
 
 
 
 
 
 
 
 
7b7e662
 
 
 
 
 
 
 
 
 
5d88cba
e20b058
7b7e662
 
 
e20b058
0c82ac9
7b7e662
0c82ac9
7b7e662
 
 
 
 
 
 
0c82ac9
7b7e662
 
 
 
0c82ac9
7b7e662
0c82ac9
7b7e662
0c82ac9
7b7e662
 
 
0c82ac9
7b7e662
0c82ac9
7b7e662
 
0c82ac9
 
7b7e662
 
0c82ac9
 
7b7e662
 
 
 
0c82ac9
7b7e662
0c82ac9
7b7e662
0c82ac9
7b7e662
0c82ac9
7b7e662
0c82ac9
7b7e662
0c82ac9
7b7e662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c82ac9
 
7b7e662
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
tags: 
- pyannote
- pyannote-audio
- pyannote-audio-pipeline
- audio
- voice
- speech
- speaker
- speaker-diarization
- speaker-change-detection
- voice-activity-detection
- overlapped-speech-detection
datasets:
- ami
- dihard
- voxconverse
- aishell
- repere
- voxceleb
license: mit
---

# 🎹 Speaker diarization

Relies on pyannote.audio 2.0: see [installation instructions](https://github.com/pyannote/pyannote-audio/tree/develop#installation).


## TL;DR

```python
# load the pipeline from Hugginface Hub
from pyannote.audio import Pipeline
pipeline = Pipeline.from_pretrained("pyannote/[email protected]")

# apply the pipeline to an audio file
diarization = pipeline("audio.wav")

# dump the diarization output to disk using RTTM format
with open("audio.rttm", "w") as rttm:
    diarization.write_rttm(rttm)
```

## Advanced usage

In case the number of speakers is known in advance, one can use the `num_speakers` option:

```python
diarization = pipeline("audio.wav", num_speakers=2)
```

One can also provide lower and/or upper bounds on the number of speakers using `min_speakers` and `max_speakers` options:

```python
diarization = pipeline("audio.wav", min_speakers=2, max_speakers=5)
```

If you feel adventurous, you can try and play with the various pipeline hyper-parameters.  
For instance, one can use a more aggressive voice activity detection by increasing the value of `segmentation_onset` threshold:

```python
hparams = pipeline.parameters(instantiated=True)
hparams["segmentation_onset"] += 0.1
pipeline.instantiate(hparams)
```

## Benchmark 

### Real-time factor

Real-time factor is around 5% using one Nvidia Tesla V100 SXM2 GPU (for the neural inference part) and one Intel Cascade Lake 6248 CPU (for the clustering part).

In other words, it takes approximately 3 minutes to process a one hour conversation.

### Accuracy

This pipeline is benchmarked on a growing collection of datasets.  

Processing is fully automatic:

* no manual voice activity detection (as is sometimes the case in the literature)
* no manual number of speakers (though it is possible to provide it to the pipeline)
* no fine-tuning of the internal models nor tuning of the pipeline hyper-parameters to each dataset

... with the least forgiving diarization error rate (DER) setup (named *"Full"* in [this paper](https://doi.org/10.1016/j.csl.2021.101254)):

* no forgiveness collar
* evaluation of overlapped speech


| Benchmark                                                                                                                          | [DER%](. "Diarization error rate") | [FA%](. "False alarm rate") | [Miss%](. "Missed detection rate") | [Conf%](. "Speaker confusion rate") | Expected output                                                                            | File-level evaluation                                                                      |
| ---------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------- | --------------------------- | ---------------------------------- | ----------------------------------- | ------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------ |
| [AISHELL-4](http://www.openslr.org/111/)                                                                                           | 14.61                              | 3.31                        | 4.35                               | 6.95                                | [RTTM](reproducible_research/AISHELL.SpeakerDiarization.Full.test.rttm)                    | [eval](reproducible_research/AISHELL.SpeakerDiarization.Full.test.eval)                    |
| [AMI *Mix-Headset*](https://groups.inf.ed.ac.uk/ami/corpus/) [*only_words*](https://github.com/BUTSpeechFIT/AMI-diarization-setup) | 18.21                              | 3.28                        | 11.07                              | 3.87                                | [RTTM](reproducible_research/2022.07/AMI.SpeakerDiarization.only_words.test.rttm)          | [eval](reproducible_research/2022.07/AMI.SpeakerDiarization.only_words.test.eval)          |
| [AMI *Array1-01*](https://groups.inf.ed.ac.uk/ami/corpus/) [*only_words*](https://github.com/BUTSpeechFIT/AMI-diarization-setup)   | 29.00                              | 2.71                        | 21.61                              | 4.68                                | [RTTM](reproducible_research/2022.07/AMI-SDM.SpeakerDiarization.only_words.test.rttm)      | [eval](reproducible_research/2022.07/AMI-SDM.SpeakerDiarization.only_words.test.eval)      |
| [CALLHOME](https://catalog.ldc.upenn.edu/LDC2001S97) [*Part2*](https://github.com/BUTSpeechFIT/CALLHOME_sublists/issues/1)         | 30.24                              | 3.71                        | 16.86                              | 9.66                                | [RTTM](reproducible_research/2022.07/CALLHOME.SpeakerDiarization.CALLHOME.test.rttm)       | [eval](reproducible_research/2022.07/CALLHOME.SpeakerDiarization.CALLHOME.test.eval)       |
| [DIHARD 3 *Full*](https://arxiv.org/abs/2012.01477)                                                                                | 20.99                              | 4.25                        | 10.74                              | 6.00                                | [RTTM](reproducible_research/2022.07/DIHARD.SpeakerDiarization.Full.test.rttm)             | [eval](reproducible_research/2022.07/DIHARD.SpeakerDiarization.Full.test.eval)             |
| [REPERE *Phase 2*](https://islrn.org/resources/360-758-359-485-0/)                                                                 | 12.62                              | 1.55                        | 3.30                               | 7.76                                | [RTTM](reproducible_research/2022.07/REPERE.SpeakerDiarization.Full.test.rttm)             | [eval](reproducible_research/2022.07/REPERE.SpeakerDiarization.Full.test.eval)             |
| [VoxConverse *v0.0.2*](https://github.com/joonson/voxconverse)                                                                     | 12.76                              | 3.45                        | 3.85                               | 5.46                                | [RTTM](reproducible_research/2022.07/VoxConverse.SpeakerDiarization.VoxConverse.test.rttm) | [eval](reproducible_research/2022.07/VoxConverse.SpeakerDiarization.VoxConverse.test.eval) |


## Support

For commercial enquiries and scientific consulting, please contact [me](mailto:[email protected]).  
For [technical questions](https://github.com/pyannote/pyannote-audio/discussions) and [bug reports](https://github.com/pyannote/pyannote-audio/issues), please check [pyannote.audio](https://github.com/pyannote/pyannote-audio) Github repository.


## Citations

```bibtex
@inproceedings{Bredin2021,
  Title = {{End-to-end speaker segmentation for overlap-aware resegmentation}},
  Author = {{Bredin}, Herv{\'e} and {Laurent}, Antoine},
  Booktitle = {Proc. Interspeech 2021},
  Address = {Brno, Czech Republic},
  Month = {August},
  Year = {2021},
}
```

```bibtex
@inproceedings{Bredin2020,
  Title = {{pyannote.audio: neural building blocks for speaker diarization}},
  Author = {{Bredin}, Herv{\'e} and {Yin}, Ruiqing and {Coria}, Juan Manuel and {Gelly}, Gregory and {Korshunov}, Pavel and {Lavechin}, Marvin and {Fustes}, Diego and {Titeux}, Hadrien and {Bouaziz}, Wassim and {Gill}, Marie-Philippe},
  Booktitle = {ICASSP 2020, IEEE International Conference on Acoustics, Speech, and Signal Processing},
  Address = {Barcelona, Spain},
  Month = {May},
  Year = {2020},
}
```