Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- checkpoint-150/added_tokens.json +24 -0
- checkpoint-150/config.json +29 -0
- checkpoint-150/generation_config.json +14 -0
- checkpoint-150/global_step150/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-150/global_step150/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-150/global_step150/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-150/global_step150/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoint-150/global_step150/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- checkpoint-150/global_step150/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- checkpoint-150/latest +1 -0
- checkpoint-150/merges.txt +0 -0
- checkpoint-150/model-00001-of-00002.safetensors +3 -0
- checkpoint-150/model-00002-of-00002.safetensors +3 -0
- checkpoint-150/model.safetensors.index.json +441 -0
- checkpoint-150/rng_state_0.pth +3 -0
- checkpoint-150/rng_state_1.pth +3 -0
- checkpoint-150/rng_state_2.pth +3 -0
- checkpoint-150/scheduler.pt +3 -0
- checkpoint-150/special_tokens_map.json +31 -0
- checkpoint-150/tokenizer.json +3 -0
- checkpoint-150/tokenizer_config.json +209 -0
- checkpoint-150/trainer_state.json +1008 -0
- checkpoint-150/training_args.bin +3 -0
- checkpoint-150/vocab.json +0 -0
- checkpoint-150/zero_to_fp32.py +674 -0
- checkpoint-275/added_tokens.json +24 -0
- checkpoint-275/config.json +29 -0
- checkpoint-275/generation_config.json +14 -0
- checkpoint-275/global_step275/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoint-275/global_step275/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- checkpoint-275/global_step275/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- checkpoint-275/latest +1 -0
- checkpoint-275/merges.txt +0 -0
- checkpoint-275/model-00001-of-00002.safetensors +3 -0
- checkpoint-275/model-00002-of-00002.safetensors +3 -0
- checkpoint-275/model.safetensors.index.json +441 -0
- checkpoint-275/rng_state_0.pth +3 -0
- checkpoint-275/rng_state_1.pth +3 -0
- checkpoint-275/rng_state_2.pth +3 -0
- checkpoint-275/scheduler.pt +3 -0
- checkpoint-275/special_tokens_map.json +31 -0
- checkpoint-275/tokenizer.json +3 -0
- checkpoint-275/tokenizer_config.json +209 -0
- checkpoint-275/trainer_state.json +1814 -0
- checkpoint-275/training_args.bin +3 -0
- checkpoint-275/vocab.json +0 -0
- checkpoint-275/zero_to_fp32.py +674 -0
- checkpoint-375/added_tokens.json +24 -0
- checkpoint-375/config.json +29 -0
- checkpoint-375/generation_config.json +14 -0
checkpoint-150/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoint-150/config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 2048,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 11008,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"max_window_layers": 70,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 16,
|
17 |
+
"num_hidden_layers": 36,
|
18 |
+
"num_key_value_heads": 2,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 1000000.0,
|
22 |
+
"sliding_window": null,
|
23 |
+
"tie_word_embeddings": true,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.48.1",
|
26 |
+
"use_cache": false,
|
27 |
+
"use_sliding_window": false,
|
28 |
+
"vocab_size": 151936
|
29 |
+
}
|
checkpoint-150/generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.48.1"
|
14 |
+
}
|
checkpoint-150/global_step150/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:268f74e7b3f7b8479e265af5e4b0d1d09d76965ec9749dafbbc63c4bf6f35e78
|
3 |
+
size 12343763366
|
checkpoint-150/global_step150/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40ce63122ce3c01e8c2498e89bc798803166e56388d3fc33df9cb23924485f8f
|
3 |
+
size 12343763366
|
checkpoint-150/global_step150/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59fd1a788334fb52ca53fc4732dc11e0d0e473d01d01f6725db8ad2f3fd94660
|
3 |
+
size 12343763366
|
checkpoint-150/global_step150/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a971cad78c8050560b5796a1a50fe593b15d07deadf239ab715a0b0780cc979
|
3 |
+
size 212888
|
checkpoint-150/global_step150/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:93c4c2273904d8d50df7c8ce8bbe1e84d173452b99c59cd32d49ae98a1c3ef67
|
3 |
+
size 212824
|
checkpoint-150/global_step150/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d04ff73c483427817e76e95cb32f72276d0a9bc8f14c11aa5608e7ada98927b4
|
3 |
+
size 212824
|
checkpoint-150/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step150
|
checkpoint-150/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-150/model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:deefc980a25d054d27e2031eb168d6bee595337d5357784109cd5738f1aa8c9b
|
3 |
+
size 4957560304
|
checkpoint-150/model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f8ca142d3adc0fc9bd517e1c24ce7e43e78f15ee8a0507a54f21ecd95af98e0
|
3 |
+
size 1214366696
|
checkpoint-150/model.safetensors.index.json
ADDED
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6171877376
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
7 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
260 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
261 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
262 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
263 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
264 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
272 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
273 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
274 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
275 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
276 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
278 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
279 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
281 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
283 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
284 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
295 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
296 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
298 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
300 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
302 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
305 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
307 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
308 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
309 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
310 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
311 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
312 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
314 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
315 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
317 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
319 |
+
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
320 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
321 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
322 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
323 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
326 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
327 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
329 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
331 |
+
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
332 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
334 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
335 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
336 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
338 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
339 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
341 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
343 |
+
"model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
344 |
+
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
345 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
346 |
+
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
347 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
348 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
350 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
351 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
353 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
355 |
+
"model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
356 |
+
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
357 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
358 |
+
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
359 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
360 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
362 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
363 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
365 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
367 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
368 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
369 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
370 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
371 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
372 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
373 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
374 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
376 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
377 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
378 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
379 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
380 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
382 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
384 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
385 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
386 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
388 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
389 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
390 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
391 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
392 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
394 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
395 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
396 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
397 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
398 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
399 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
400 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
401 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
402 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
403 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
404 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
405 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
406 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
407 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
408 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
409 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
410 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
411 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
412 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
413 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
414 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
415 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
416 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
417 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
418 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
419 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
420 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
421 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
422 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
423 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
424 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
425 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
426 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
427 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
428 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
429 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
430 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
431 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
432 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
433 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
434 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
435 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
436 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
437 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
438 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
439 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
440 |
+
}
|
441 |
+
}
|
checkpoint-150/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4357be668be0fa78119820fc7ff4f9198c0eaa08f4a6956d7c26536a111535a6
|
3 |
+
size 15024
|
checkpoint-150/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a74a61030b17b275efd7501c6f51e0e048c01f628b0e2f15b9e30e8605c1b01
|
3 |
+
size 15024
|
checkpoint-150/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:210802bc6474bf648d78faddd5bcd83d338dc6df1467cd5103c3ff05e5f04b2e
|
3 |
+
size 15024
|
checkpoint-150/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79364a782cdd1039f3deb4f9e9499cb4d544df4ea0860b2220d7d2be94cc8b3f
|
3 |
+
size 1064
|
checkpoint-150/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-150/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
|
3 |
+
size 11422063
|
checkpoint-150/tokenizer_config.json
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"padding_side": "left",
|
206 |
+
"split_special_tokens": false,
|
207 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
208 |
+
"unk_token": null
|
209 |
+
}
|
checkpoint-150/trainer_state.json
ADDED
@@ -0,0 +1,1008 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.08,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 150,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"completion_length": 485.49220275878906,
|
13 |
+
"epoch": 0.0010666666666666667,
|
14 |
+
"grad_norm": 0.13112049806907955,
|
15 |
+
"kl": 0.0,
|
16 |
+
"learning_rate": 7.142857142857142e-08,
|
17 |
+
"loss": -0.0,
|
18 |
+
"reward": 0.3281250111758709,
|
19 |
+
"reward_std": 0.4913413915783167,
|
20 |
+
"rewards/equation_reward_func": 0.05729166814126074,
|
21 |
+
"rewards/format_reward_func": 0.27083334047347307,
|
22 |
+
"step": 2
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"completion_length": 530.2265796661377,
|
26 |
+
"epoch": 0.0021333333333333334,
|
27 |
+
"grad_norm": 0.12198138838063947,
|
28 |
+
"kl": 0.0003826618194580078,
|
29 |
+
"learning_rate": 1.4285714285714285e-07,
|
30 |
+
"loss": 0.0,
|
31 |
+
"reward": 0.299479172565043,
|
32 |
+
"reward_std": 0.44007157534360886,
|
33 |
+
"rewards/equation_reward_func": 0.03385416744276881,
|
34 |
+
"rewards/format_reward_func": 0.26562500977888703,
|
35 |
+
"step": 4
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"completion_length": 496.8776264190674,
|
39 |
+
"epoch": 0.0032,
|
40 |
+
"grad_norm": 0.12162717174644112,
|
41 |
+
"kl": 0.0003865957260131836,
|
42 |
+
"learning_rate": 2.1428571428571426e-07,
|
43 |
+
"loss": 0.0,
|
44 |
+
"reward": 0.2916666781529784,
|
45 |
+
"reward_std": 0.47719811648130417,
|
46 |
+
"rewards/equation_reward_func": 0.05468750116415322,
|
47 |
+
"rewards/format_reward_func": 0.23697917303070426,
|
48 |
+
"step": 6
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"completion_length": 504.77865982055664,
|
52 |
+
"epoch": 0.004266666666666667,
|
53 |
+
"grad_norm": 0.13232346241260942,
|
54 |
+
"kl": 0.0003762245178222656,
|
55 |
+
"learning_rate": 2.857142857142857e-07,
|
56 |
+
"loss": 0.0,
|
57 |
+
"reward": 0.33593750558793545,
|
58 |
+
"reward_std": 0.4751614350825548,
|
59 |
+
"rewards/equation_reward_func": 0.04947916720993817,
|
60 |
+
"rewards/format_reward_func": 0.28645834140479565,
|
61 |
+
"step": 8
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"completion_length": 475.7057456970215,
|
65 |
+
"epoch": 0.005333333333333333,
|
66 |
+
"grad_norm": 0.13843718324607834,
|
67 |
+
"kl": 0.0003968477249145508,
|
68 |
+
"learning_rate": 3.5714285714285716e-07,
|
69 |
+
"loss": 0.0,
|
70 |
+
"reward": 0.3828125102445483,
|
71 |
+
"reward_std": 0.5227206833660603,
|
72 |
+
"rewards/equation_reward_func": 0.0885416679084301,
|
73 |
+
"rewards/format_reward_func": 0.2942708395421505,
|
74 |
+
"step": 10
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"completion_length": 475.98699378967285,
|
78 |
+
"epoch": 0.0064,
|
79 |
+
"grad_norm": 0.14337833822484186,
|
80 |
+
"kl": 0.0004818439483642578,
|
81 |
+
"learning_rate": 4.285714285714285e-07,
|
82 |
+
"loss": 0.0,
|
83 |
+
"reward": 0.33333334140479565,
|
84 |
+
"reward_std": 0.4693184234201908,
|
85 |
+
"rewards/equation_reward_func": 0.05468750139698386,
|
86 |
+
"rewards/format_reward_func": 0.2786458395421505,
|
87 |
+
"step": 12
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"completion_length": 472.8099060058594,
|
91 |
+
"epoch": 0.007466666666666667,
|
92 |
+
"grad_norm": 0.129867140491159,
|
93 |
+
"kl": 0.0007684230804443359,
|
94 |
+
"learning_rate": 5e-07,
|
95 |
+
"loss": 0.0,
|
96 |
+
"reward": 0.45052084885537624,
|
97 |
+
"reward_std": 0.5166866518557072,
|
98 |
+
"rewards/equation_reward_func": 0.041666667675599456,
|
99 |
+
"rewards/format_reward_func": 0.40885418094694614,
|
100 |
+
"step": 14
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"completion_length": 464.46875762939453,
|
104 |
+
"epoch": 0.008533333333333334,
|
105 |
+
"grad_norm": 0.1279190002551803,
|
106 |
+
"kl": 0.0013058185577392578,
|
107 |
+
"learning_rate": 4.999740409224932e-07,
|
108 |
+
"loss": 0.0,
|
109 |
+
"reward": 0.5052083488553762,
|
110 |
+
"reward_std": 0.5728582534939051,
|
111 |
+
"rewards/equation_reward_func": 0.06510416814126074,
|
112 |
+
"rewards/format_reward_func": 0.4401041753590107,
|
113 |
+
"step": 16
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"completion_length": 480.2291717529297,
|
117 |
+
"epoch": 0.0096,
|
118 |
+
"grad_norm": 0.10647649710010443,
|
119 |
+
"kl": 0.00380706787109375,
|
120 |
+
"learning_rate": 4.998961690809627e-07,
|
121 |
+
"loss": 0.0,
|
122 |
+
"reward": 0.6588541902601719,
|
123 |
+
"reward_std": 0.5287479311227798,
|
124 |
+
"rewards/equation_reward_func": 0.05468750139698386,
|
125 |
+
"rewards/format_reward_func": 0.6041666828095913,
|
126 |
+
"step": 18
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"completion_length": 493.8073043823242,
|
130 |
+
"epoch": 0.010666666666666666,
|
131 |
+
"grad_norm": 0.10522760864642984,
|
132 |
+
"kl": 0.004913330078125,
|
133 |
+
"learning_rate": 4.997664006472578e-07,
|
134 |
+
"loss": 0.0,
|
135 |
+
"reward": 0.7734375223517418,
|
136 |
+
"reward_std": 0.4910791157744825,
|
137 |
+
"rewards/equation_reward_func": 0.07031250116415322,
|
138 |
+
"rewards/format_reward_func": 0.7031250186264515,
|
139 |
+
"step": 20
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"completion_length": 455.6510524749756,
|
143 |
+
"epoch": 0.011733333333333333,
|
144 |
+
"grad_norm": 0.09917661844432689,
|
145 |
+
"kl": 0.008411407470703125,
|
146 |
+
"learning_rate": 4.995847625707292e-07,
|
147 |
+
"loss": 0.0,
|
148 |
+
"reward": 0.7812500186264515,
|
149 |
+
"reward_std": 0.4674575887620449,
|
150 |
+
"rewards/equation_reward_func": 0.0651041679084301,
|
151 |
+
"rewards/format_reward_func": 0.7161458507180214,
|
152 |
+
"step": 22
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"completion_length": 464.50782012939453,
|
156 |
+
"epoch": 0.0128,
|
157 |
+
"grad_norm": 0.10189992043189328,
|
158 |
+
"kl": 0.0059833526611328125,
|
159 |
+
"learning_rate": 4.993512925726318e-07,
|
160 |
+
"loss": 0.0,
|
161 |
+
"reward": 0.8619791865348816,
|
162 |
+
"reward_std": 0.49650320410728455,
|
163 |
+
"rewards/equation_reward_func": 0.08854166860692203,
|
164 |
+
"rewards/format_reward_func": 0.7734375223517418,
|
165 |
+
"step": 24
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"completion_length": 447.40626335144043,
|
169 |
+
"epoch": 0.013866666666666666,
|
170 |
+
"grad_norm": 0.09219816177682034,
|
171 |
+
"kl": 0.006900787353515625,
|
172 |
+
"learning_rate": 4.990660391382923e-07,
|
173 |
+
"loss": 0.0,
|
174 |
+
"reward": 0.960937537252903,
|
175 |
+
"reward_std": 0.4377214591950178,
|
176 |
+
"rewards/equation_reward_func": 0.11718750256113708,
|
177 |
+
"rewards/format_reward_func": 0.8437500260770321,
|
178 |
+
"step": 26
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"completion_length": 436.3099117279053,
|
182 |
+
"epoch": 0.014933333333333333,
|
183 |
+
"grad_norm": 0.07907793746945187,
|
184 |
+
"kl": 0.009281158447265625,
|
185 |
+
"learning_rate": 4.987290615070384e-07,
|
186 |
+
"loss": 0.0,
|
187 |
+
"reward": 0.9713542014360428,
|
188 |
+
"reward_std": 0.3975960807874799,
|
189 |
+
"rewards/equation_reward_func": 0.09895833535119891,
|
190 |
+
"rewards/format_reward_func": 0.872395858168602,
|
191 |
+
"step": 28
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"completion_length": 428.1354293823242,
|
195 |
+
"epoch": 0.016,
|
196 |
+
"grad_norm": 0.0845150241699145,
|
197 |
+
"kl": 0.011430740356445312,
|
198 |
+
"learning_rate": 4.983404296598978e-07,
|
199 |
+
"loss": 0.0,
|
200 |
+
"reward": 0.9531250298023224,
|
201 |
+
"reward_std": 0.359499204903841,
|
202 |
+
"rewards/equation_reward_func": 0.0703125016298145,
|
203 |
+
"rewards/format_reward_func": 0.8828125223517418,
|
204 |
+
"step": 30
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"completion_length": 434.62500953674316,
|
208 |
+
"epoch": 0.017066666666666667,
|
209 |
+
"grad_norm": 0.08196142586101564,
|
210 |
+
"kl": 0.010782241821289062,
|
211 |
+
"learning_rate": 4.979002243050646e-07,
|
212 |
+
"loss": 0.0,
|
213 |
+
"reward": 1.0260416977107525,
|
214 |
+
"reward_std": 0.30062979739159346,
|
215 |
+
"rewards/equation_reward_func": 0.09635416860692203,
|
216 |
+
"rewards/format_reward_func": 0.9296875260770321,
|
217 |
+
"step": 32
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"completion_length": 438.08595085144043,
|
221 |
+
"epoch": 0.018133333333333335,
|
222 |
+
"grad_norm": 0.08432790923176402,
|
223 |
+
"kl": 0.012115478515625,
|
224 |
+
"learning_rate": 4.974085368611381e-07,
|
225 |
+
"loss": 0.0,
|
226 |
+
"reward": 1.049479205161333,
|
227 |
+
"reward_std": 0.3121222285553813,
|
228 |
+
"rewards/equation_reward_func": 0.11197917000390589,
|
229 |
+
"rewards/format_reward_func": 0.9375000223517418,
|
230 |
+
"step": 34
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"completion_length": 421.16407203674316,
|
234 |
+
"epoch": 0.0192,
|
235 |
+
"grad_norm": 0.080639508238748,
|
236 |
+
"kl": 0.01397705078125,
|
237 |
+
"learning_rate": 4.968654694381379e-07,
|
238 |
+
"loss": 0.0,
|
239 |
+
"reward": 1.0598958618938923,
|
240 |
+
"reward_std": 0.27779901027679443,
|
241 |
+
"rewards/equation_reward_func": 0.10416666907258332,
|
242 |
+
"rewards/format_reward_func": 0.9557291865348816,
|
243 |
+
"step": 36
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"completion_length": 405.12240982055664,
|
247 |
+
"epoch": 0.020266666666666665,
|
248 |
+
"grad_norm": 0.07681322754981268,
|
249 |
+
"kl": 0.013866424560546875,
|
250 |
+
"learning_rate": 4.962711348162987e-07,
|
251 |
+
"loss": 0.0,
|
252 |
+
"reward": 1.0390625409781933,
|
253 |
+
"reward_std": 0.2664716215804219,
|
254 |
+
"rewards/equation_reward_func": 0.08593750279396772,
|
255 |
+
"rewards/format_reward_func": 0.9531250186264515,
|
256 |
+
"step": 38
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"completion_length": 400.0104274749756,
|
260 |
+
"epoch": 0.021333333333333333,
|
261 |
+
"grad_norm": 0.08198714493646655,
|
262 |
+
"kl": 0.015293121337890625,
|
263 |
+
"learning_rate": 4.956256564226487e-07,
|
264 |
+
"loss": 0.0,
|
265 |
+
"reward": 1.1067708730697632,
|
266 |
+
"reward_std": 0.28682188084349036,
|
267 |
+
"rewards/equation_reward_func": 0.14322917023673654,
|
268 |
+
"rewards/format_reward_func": 0.9635416828095913,
|
269 |
+
"step": 40
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"completion_length": 400.78386306762695,
|
273 |
+
"epoch": 0.0224,
|
274 |
+
"grad_norm": 0.0855015587257399,
|
275 |
+
"kl": 0.018611907958984375,
|
276 |
+
"learning_rate": 4.949291683053768e-07,
|
277 |
+
"loss": 0.0,
|
278 |
+
"reward": 1.0937500223517418,
|
279 |
+
"reward_std": 0.24716421775519848,
|
280 |
+
"rewards/equation_reward_func": 0.11197916930541396,
|
281 |
+
"rewards/format_reward_func": 0.9817708469927311,
|
282 |
+
"step": 42
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"completion_length": 408.34115409851074,
|
286 |
+
"epoch": 0.023466666666666667,
|
287 |
+
"grad_norm": 0.07249139521720419,
|
288 |
+
"kl": 0.017139434814453125,
|
289 |
+
"learning_rate": 4.941818151059955e-07,
|
290 |
+
"loss": 0.0,
|
291 |
+
"reward": 1.0546875298023224,
|
292 |
+
"reward_std": 0.24979113461449742,
|
293 |
+
"rewards/equation_reward_func": 0.0963541695382446,
|
294 |
+
"rewards/format_reward_func": 0.9583333544433117,
|
295 |
+
"step": 44
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"completion_length": 388.62761306762695,
|
299 |
+
"epoch": 0.024533333333333334,
|
300 |
+
"grad_norm": 0.07507762465990464,
|
301 |
+
"kl": 0.017795562744140625,
|
302 |
+
"learning_rate": 4.933837520293017e-07,
|
303 |
+
"loss": 0.0,
|
304 |
+
"reward": 1.0781250484287739,
|
305 |
+
"reward_std": 0.2523620016872883,
|
306 |
+
"rewards/equation_reward_func": 0.11197917046956718,
|
307 |
+
"rewards/format_reward_func": 0.9661458507180214,
|
308 |
+
"step": 46
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"completion_length": 399.57032585144043,
|
312 |
+
"epoch": 0.0256,
|
313 |
+
"grad_norm": 0.06604121980517051,
|
314 |
+
"kl": 0.017971038818359375,
|
315 |
+
"learning_rate": 4.925351448111454e-07,
|
316 |
+
"loss": 0.0,
|
317 |
+
"reward": 1.0468750335276127,
|
318 |
+
"reward_std": 0.21127380011603236,
|
319 |
+
"rewards/equation_reward_func": 0.07552083511836827,
|
320 |
+
"rewards/format_reward_func": 0.9713541865348816,
|
321 |
+
"step": 48
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"completion_length": 392.4687557220459,
|
325 |
+
"epoch": 0.02666666666666667,
|
326 |
+
"grad_norm": 0.0903310628098169,
|
327 |
+
"kl": 0.0193939208984375,
|
328 |
+
"learning_rate": 4.91636169684011e-07,
|
329 |
+
"loss": 0.0,
|
330 |
+
"reward": 1.1093750409781933,
|
331 |
+
"reward_std": 0.29062134958803654,
|
332 |
+
"rewards/equation_reward_func": 0.13541667209938169,
|
333 |
+
"rewards/format_reward_func": 0.9739583432674408,
|
334 |
+
"step": 50
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"completion_length": 374.1067810058594,
|
338 |
+
"epoch": 0.027733333333333332,
|
339 |
+
"grad_norm": 0.07170688038365744,
|
340 |
+
"kl": 0.02114105224609375,
|
341 |
+
"learning_rate": 4.906870133404186e-07,
|
342 |
+
"loss": 0.0,
|
343 |
+
"reward": 1.0833333693444729,
|
344 |
+
"reward_std": 0.2505181049928069,
|
345 |
+
"rewards/equation_reward_func": 0.11458333535119891,
|
346 |
+
"rewards/format_reward_func": 0.9687500074505806,
|
347 |
+
"step": 52
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"completion_length": 385.36980056762695,
|
351 |
+
"epoch": 0.0288,
|
352 |
+
"grad_norm": 0.08750349012682264,
|
353 |
+
"kl": 0.02417755126953125,
|
354 |
+
"learning_rate": 4.896878728941531e-07,
|
355 |
+
"loss": 0.0,
|
356 |
+
"reward": 1.1432292014360428,
|
357 |
+
"reward_std": 0.3026517196558416,
|
358 |
+
"rewards/equation_reward_func": 0.16666667186655104,
|
359 |
+
"rewards/format_reward_func": 0.9765625186264515,
|
360 |
+
"step": 54
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"completion_length": 382.93751335144043,
|
364 |
+
"epoch": 0.029866666666666666,
|
365 |
+
"grad_norm": 0.08790417727425984,
|
366 |
+
"kl": 0.018756866455078125,
|
367 |
+
"learning_rate": 4.886389558393284e-07,
|
368 |
+
"loss": 0.0,
|
369 |
+
"reward": 1.1223958693444729,
|
370 |
+
"reward_std": 0.2850013840943575,
|
371 |
+
"rewards/equation_reward_func": 0.14322917023673654,
|
372 |
+
"rewards/format_reward_func": 0.979166679084301,
|
373 |
+
"step": 56
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"completion_length": 403.513032913208,
|
377 |
+
"epoch": 0.030933333333333334,
|
378 |
+
"grad_norm": 0.07614614875477466,
|
379 |
+
"kl": 0.02037811279296875,
|
380 |
+
"learning_rate": 4.875404800072976e-07,
|
381 |
+
"loss": 0.0,
|
382 |
+
"reward": 1.1432292088866234,
|
383 |
+
"reward_std": 0.2669796203263104,
|
384 |
+
"rewards/equation_reward_func": 0.16145833977498114,
|
385 |
+
"rewards/format_reward_func": 0.9817708469927311,
|
386 |
+
"step": 58
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"completion_length": 382.6432418823242,
|
390 |
+
"epoch": 0.032,
|
391 |
+
"grad_norm": 0.0923539372935242,
|
392 |
+
"kl": 0.02227783203125,
|
393 |
+
"learning_rate": 4.86392673521415e-07,
|
394 |
+
"loss": 0.0,
|
395 |
+
"reward": 1.1536458693444729,
|
396 |
+
"reward_std": 0.31879409588873386,
|
397 |
+
"rewards/equation_reward_func": 0.1796875053551048,
|
398 |
+
"rewards/format_reward_func": 0.9739583432674408,
|
399 |
+
"step": 60
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"completion_length": 358.4349060058594,
|
403 |
+
"epoch": 0.03306666666666667,
|
404 |
+
"grad_norm": 0.10173008574938576,
|
405 |
+
"kl": 0.02350616455078125,
|
406 |
+
"learning_rate": 4.851957747496606e-07,
|
407 |
+
"loss": 0.0,
|
408 |
+
"reward": 1.1562500447034836,
|
409 |
+
"reward_std": 0.2772155348211527,
|
410 |
+
"rewards/equation_reward_func": 0.16927083814516664,
|
411 |
+
"rewards/format_reward_func": 0.9869791753590107,
|
412 |
+
"step": 62
|
413 |
+
},
|
414 |
+
{
|
415 |
+
"completion_length": 364.18490409851074,
|
416 |
+
"epoch": 0.034133333333333335,
|
417 |
+
"grad_norm": 0.08496355305518047,
|
418 |
+
"kl": 0.02630615234375,
|
419 |
+
"learning_rate": 4.839500322551386e-07,
|
420 |
+
"loss": 0.0,
|
421 |
+
"reward": 1.1093750447034836,
|
422 |
+
"reward_std": 0.24286148557439446,
|
423 |
+
"rewards/equation_reward_func": 0.12760417093522847,
|
424 |
+
"rewards/format_reward_func": 0.9817708432674408,
|
425 |
+
"step": 64
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"completion_length": 373.833345413208,
|
429 |
+
"epoch": 0.0352,
|
430 |
+
"grad_norm": 0.09458816516251609,
|
431 |
+
"kl": 0.02667999267578125,
|
432 |
+
"learning_rate": 4.826557047444563e-07,
|
433 |
+
"loss": 0.0,
|
434 |
+
"reward": 1.1848958656191826,
|
435 |
+
"reward_std": 0.3138170298188925,
|
436 |
+
"rewards/equation_reward_func": 0.20572917233221233,
|
437 |
+
"rewards/format_reward_func": 0.979166679084301,
|
438 |
+
"step": 66
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"completion_length": 352.2083435058594,
|
442 |
+
"epoch": 0.03626666666666667,
|
443 |
+
"grad_norm": 0.08416786947789269,
|
444 |
+
"kl": 0.03083038330078125,
|
445 |
+
"learning_rate": 4.813130610139993e-07,
|
446 |
+
"loss": 0.0,
|
447 |
+
"reward": 1.1744792088866234,
|
448 |
+
"reward_std": 0.2558550937101245,
|
449 |
+
"rewards/equation_reward_func": 0.18489583861082792,
|
450 |
+
"rewards/format_reward_func": 0.9895833432674408,
|
451 |
+
"step": 68
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"completion_length": 377.62500953674316,
|
455 |
+
"epoch": 0.037333333333333336,
|
456 |
+
"grad_norm": 0.07539913544982475,
|
457 |
+
"kl": 0.03000640869140625,
|
458 |
+
"learning_rate": 4.799223798941089e-07,
|
459 |
+
"loss": 0.0,
|
460 |
+
"reward": 1.070312537252903,
|
461 |
+
"reward_std": 0.17193882586434484,
|
462 |
+
"rewards/equation_reward_func": 0.08072916814126074,
|
463 |
+
"rewards/format_reward_func": 0.9895833432674408,
|
464 |
+
"step": 70
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"completion_length": 370.4531364440918,
|
468 |
+
"epoch": 0.0384,
|
469 |
+
"grad_norm": 0.09187391682605524,
|
470 |
+
"kl": 0.03436279296875,
|
471 |
+
"learning_rate": 4.78483950191177e-07,
|
472 |
+
"loss": 0.0,
|
473 |
+
"reward": 1.1562500298023224,
|
474 |
+
"reward_std": 0.2756755482405424,
|
475 |
+
"rewards/equation_reward_func": 0.1770833362825215,
|
476 |
+
"rewards/format_reward_func": 0.979166679084301,
|
477 |
+
"step": 72
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"completion_length": 373.04688453674316,
|
481 |
+
"epoch": 0.039466666666666664,
|
482 |
+
"grad_norm": 0.09537515327502834,
|
483 |
+
"kl": 0.03740692138671875,
|
484 |
+
"learning_rate": 4.769980706276687e-07,
|
485 |
+
"loss": 0.0,
|
486 |
+
"reward": 1.1354167088866234,
|
487 |
+
"reward_std": 0.25582731096073985,
|
488 |
+
"rewards/equation_reward_func": 0.15885417256504297,
|
489 |
+
"rewards/format_reward_func": 0.9765625186264515,
|
490 |
+
"step": 74
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"completion_length": 387.8567810058594,
|
494 |
+
"epoch": 0.04053333333333333,
|
495 |
+
"grad_norm": 0.08000596022141122,
|
496 |
+
"kl": 0.0389404296875,
|
497 |
+
"learning_rate": 4.7546504978008595e-07,
|
498 |
+
"loss": 0.0,
|
499 |
+
"reward": 1.1328125335276127,
|
500 |
+
"reward_std": 0.30721960263326764,
|
501 |
+
"rewards/equation_reward_func": 0.1666666700039059,
|
502 |
+
"rewards/format_reward_func": 0.9661458507180214,
|
503 |
+
"step": 76
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"completion_length": 390.2448024749756,
|
507 |
+
"epoch": 0.0416,
|
508 |
+
"grad_norm": 0.07863626089779173,
|
509 |
+
"kl": 0.0442047119140625,
|
510 |
+
"learning_rate": 4.738852060148848e-07,
|
511 |
+
"loss": 0.0,
|
512 |
+
"reward": 1.127604205161333,
|
513 |
+
"reward_std": 0.26901706866919994,
|
514 |
+
"rewards/equation_reward_func": 0.15364583814516664,
|
515 |
+
"rewards/format_reward_func": 0.9739583507180214,
|
516 |
+
"step": 78
|
517 |
+
},
|
518 |
+
{
|
519 |
+
"completion_length": 379.2161521911621,
|
520 |
+
"epoch": 0.042666666666666665,
|
521 |
+
"grad_norm": 0.08601071973954262,
|
522 |
+
"kl": 0.0434417724609375,
|
523 |
+
"learning_rate": 4.722588674223593e-07,
|
524 |
+
"loss": 0.0,
|
525 |
+
"reward": 1.1380208656191826,
|
526 |
+
"reward_std": 0.2812240272760391,
|
527 |
+
"rewards/equation_reward_func": 0.164062503259629,
|
528 |
+
"rewards/format_reward_func": 0.9739583469927311,
|
529 |
+
"step": 80
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"completion_length": 371.59115409851074,
|
533 |
+
"epoch": 0.04373333333333333,
|
534 |
+
"grad_norm": 0.07568126962421509,
|
535 |
+
"kl": 0.0497894287109375,
|
536 |
+
"learning_rate": 4.70586371748506e-07,
|
537 |
+
"loss": 0.0,
|
538 |
+
"reward": 1.1380208656191826,
|
539 |
+
"reward_std": 0.25603401800617576,
|
540 |
+
"rewards/equation_reward_func": 0.15885417070239782,
|
541 |
+
"rewards/format_reward_func": 0.9791666828095913,
|
542 |
+
"step": 82
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"completion_length": 381.30469703674316,
|
546 |
+
"epoch": 0.0448,
|
547 |
+
"grad_norm": 0.08065111561901392,
|
548 |
+
"kl": 0.0525665283203125,
|
549 |
+
"learning_rate": 4.6886806632488363e-07,
|
550 |
+
"loss": 0.0001,
|
551 |
+
"reward": 1.169270858168602,
|
552 |
+
"reward_std": 0.25962691847234964,
|
553 |
+
"rewards/equation_reward_func": 0.19531250419095159,
|
554 |
+
"rewards/format_reward_func": 0.9739583432674408,
|
555 |
+
"step": 84
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"completion_length": 350.8020944595337,
|
559 |
+
"epoch": 0.04586666666666667,
|
560 |
+
"grad_norm": 0.09857801804683694,
|
561 |
+
"kl": 0.0528717041015625,
|
562 |
+
"learning_rate": 4.6710430799648143e-07,
|
563 |
+
"loss": 0.0001,
|
564 |
+
"reward": 1.1796875447034836,
|
565 |
+
"reward_std": 0.2887058644555509,
|
566 |
+
"rewards/equation_reward_func": 0.1979166748933494,
|
567 |
+
"rewards/format_reward_func": 0.9817708507180214,
|
568 |
+
"step": 86
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"completion_length": 353.0573024749756,
|
572 |
+
"epoch": 0.046933333333333334,
|
573 |
+
"grad_norm": 0.09077630030450431,
|
574 |
+
"kl": 0.059906005859375,
|
575 |
+
"learning_rate": 4.652954630476127e-07,
|
576 |
+
"loss": 0.0001,
|
577 |
+
"reward": 1.2239583730697632,
|
578 |
+
"reward_std": 0.30759388813748956,
|
579 |
+
"rewards/equation_reward_func": 0.2500000069849193,
|
580 |
+
"rewards/format_reward_func": 0.9739583507180214,
|
581 |
+
"step": 88
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"completion_length": 359.1666784286499,
|
585 |
+
"epoch": 0.048,
|
586 |
+
"grad_norm": 0.09945645690703775,
|
587 |
+
"kl": 0.0612030029296875,
|
588 |
+
"learning_rate": 4.6344190712584713e-07,
|
589 |
+
"loss": 0.0001,
|
590 |
+
"reward": 1.2630208805203438,
|
591 |
+
"reward_std": 0.27152396691963077,
|
592 |
+
"rewards/equation_reward_func": 0.27604167466051877,
|
593 |
+
"rewards/format_reward_func": 0.9869791753590107,
|
594 |
+
"step": 90
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"completion_length": 349.7083396911621,
|
598 |
+
"epoch": 0.04906666666666667,
|
599 |
+
"grad_norm": 0.08132855652754273,
|
600 |
+
"kl": 0.06951904296875,
|
601 |
+
"learning_rate": 4.615440251639995e-07,
|
602 |
+
"loss": 0.0001,
|
603 |
+
"reward": 1.2395833656191826,
|
604 |
+
"reward_std": 0.23549415357410908,
|
605 |
+
"rewards/equation_reward_func": 0.25520834024064243,
|
606 |
+
"rewards/format_reward_func": 0.9843750074505806,
|
607 |
+
"step": 92
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"completion_length": 340.52084159851074,
|
611 |
+
"epoch": 0.050133333333333335,
|
612 |
+
"grad_norm": 0.08537044318099979,
|
613 |
+
"kl": 0.075592041015625,
|
614 |
+
"learning_rate": 4.596022113001894e-07,
|
615 |
+
"loss": 0.0001,
|
616 |
+
"reward": 1.2916667014360428,
|
617 |
+
"reward_std": 0.3320260518230498,
|
618 |
+
"rewards/equation_reward_func": 0.312500006519258,
|
619 |
+
"rewards/format_reward_func": 0.9791666828095913,
|
620 |
+
"step": 94
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"completion_length": 327.13282012939453,
|
624 |
+
"epoch": 0.0512,
|
625 |
+
"grad_norm": 0.09240179037114699,
|
626 |
+
"kl": 0.070465087890625,
|
627 |
+
"learning_rate": 4.576168687959895e-07,
|
628 |
+
"loss": 0.0001,
|
629 |
+
"reward": 1.3255208805203438,
|
630 |
+
"reward_std": 0.386608456261456,
|
631 |
+
"rewards/equation_reward_func": 0.3567708469927311,
|
632 |
+
"rewards/format_reward_func": 0.9687500074505806,
|
633 |
+
"step": 96
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"completion_length": 364.68751335144043,
|
637 |
+
"epoch": 0.05226666666666667,
|
638 |
+
"grad_norm": 0.10186126690814491,
|
639 |
+
"kl": 0.080108642578125,
|
640 |
+
"learning_rate": 4.555884099526793e-07,
|
641 |
+
"loss": 0.0001,
|
642 |
+
"reward": 1.1770833656191826,
|
643 |
+
"reward_std": 0.2261401410214603,
|
644 |
+
"rewards/equation_reward_func": 0.19010417093522847,
|
645 |
+
"rewards/format_reward_func": 0.986979179084301,
|
646 |
+
"step": 98
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"completion_length": 378.69271755218506,
|
650 |
+
"epoch": 0.05333333333333334,
|
651 |
+
"grad_norm": 0.08283978901098998,
|
652 |
+
"kl": 0.070831298828125,
|
653 |
+
"learning_rate": 4.5351725602562174e-07,
|
654 |
+
"loss": 0.0001,
|
655 |
+
"reward": 1.2083333805203438,
|
656 |
+
"reward_std": 0.2539973724633455,
|
657 |
+
"rewards/equation_reward_func": 0.22656251001171768,
|
658 |
+
"rewards/format_reward_func": 0.9817708469927311,
|
659 |
+
"step": 100
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"completion_length": 349.2812604904175,
|
663 |
+
"epoch": 0.0544,
|
664 |
+
"grad_norm": 0.10236681253344297,
|
665 |
+
"kl": 0.0821533203125,
|
666 |
+
"learning_rate": 4.514038371367791e-07,
|
667 |
+
"loss": 0.0001,
|
668 |
+
"reward": 1.3098958730697632,
|
669 |
+
"reward_std": 0.3604734097607434,
|
670 |
+
"rewards/equation_reward_func": 0.3437500107102096,
|
671 |
+
"rewards/format_reward_func": 0.9661458432674408,
|
672 |
+
"step": 102
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"completion_length": 357.3619899749756,
|
676 |
+
"epoch": 0.055466666666666664,
|
677 |
+
"grad_norm": 0.09738517323229856,
|
678 |
+
"kl": 0.086883544921875,
|
679 |
+
"learning_rate": 4.4924859218538936e-07,
|
680 |
+
"loss": 0.0001,
|
681 |
+
"reward": 1.3046875447034836,
|
682 |
+
"reward_std": 0.3255553734488785,
|
683 |
+
"rewards/equation_reward_func": 0.33072917233221233,
|
684 |
+
"rewards/format_reward_func": 0.9739583469927311,
|
685 |
+
"step": 104
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"completion_length": 365.2760524749756,
|
689 |
+
"epoch": 0.05653333333333333,
|
690 |
+
"grad_norm": 0.08975705250496918,
|
691 |
+
"kl": 0.09002685546875,
|
692 |
+
"learning_rate": 4.470519687568185e-07,
|
693 |
+
"loss": 0.0001,
|
694 |
+
"reward": 1.2968750484287739,
|
695 |
+
"reward_std": 0.33681244123727083,
|
696 |
+
"rewards/equation_reward_func": 0.3203125132713467,
|
697 |
+
"rewards/format_reward_func": 0.9765625074505806,
|
698 |
+
"step": 106
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"completion_length": 380.40365505218506,
|
702 |
+
"epoch": 0.0576,
|
703 |
+
"grad_norm": 0.08944591293143872,
|
704 |
+
"kl": 0.085113525390625,
|
705 |
+
"learning_rate": 4.4481442302960923e-07,
|
706 |
+
"loss": 0.0001,
|
707 |
+
"reward": 1.2135417126119137,
|
708 |
+
"reward_std": 0.2771795648150146,
|
709 |
+
"rewards/equation_reward_func": 0.23697917629033327,
|
710 |
+
"rewards/format_reward_func": 0.9765625149011612,
|
711 |
+
"step": 108
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"completion_length": 389.94271659851074,
|
715 |
+
"epoch": 0.058666666666666666,
|
716 |
+
"grad_norm": 0.09619766220094576,
|
717 |
+
"kl": 0.09130859375,
|
718 |
+
"learning_rate": 4.4253641968074505e-07,
|
719 |
+
"loss": 0.0001,
|
720 |
+
"reward": 1.2500000335276127,
|
721 |
+
"reward_std": 0.2892899289727211,
|
722 |
+
"rewards/equation_reward_func": 0.28645833977498114,
|
723 |
+
"rewards/format_reward_func": 0.963541679084301,
|
724 |
+
"step": 110
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"completion_length": 381.99219512939453,
|
728 |
+
"epoch": 0.05973333333333333,
|
729 |
+
"grad_norm": 0.10498087313979376,
|
730 |
+
"kl": 0.09423828125,
|
731 |
+
"learning_rate": 4.402184317891501e-07,
|
732 |
+
"loss": 0.0001,
|
733 |
+
"reward": 1.3229167088866234,
|
734 |
+
"reward_std": 0.32423597015440464,
|
735 |
+
"rewards/equation_reward_func": 0.35156250768341124,
|
736 |
+
"rewards/format_reward_func": 0.9713541865348816,
|
737 |
+
"step": 112
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"completion_length": 391.36719608306885,
|
741 |
+
"epoch": 0.0608,
|
742 |
+
"grad_norm": 0.09626210263887228,
|
743 |
+
"kl": 0.097381591796875,
|
744 |
+
"learning_rate": 4.37860940737443e-07,
|
745 |
+
"loss": 0.0001,
|
746 |
+
"reward": 1.2500000298023224,
|
747 |
+
"reward_std": 0.3341089729219675,
|
748 |
+
"rewards/equation_reward_func": 0.28385417186655104,
|
749 |
+
"rewards/format_reward_func": 0.9661458469927311,
|
750 |
+
"step": 114
|
751 |
+
},
|
752 |
+
{
|
753 |
+
"completion_length": 379.2812614440918,
|
754 |
+
"epoch": 0.06186666666666667,
|
755 |
+
"grad_norm": 0.0919023125255689,
|
756 |
+
"kl": 0.09576416015625,
|
757 |
+
"learning_rate": 4.354644361119671e-07,
|
758 |
+
"loss": 0.0001,
|
759 |
+
"reward": 1.2968750447034836,
|
760 |
+
"reward_std": 0.30213321885094047,
|
761 |
+
"rewards/equation_reward_func": 0.3255208437331021,
|
762 |
+
"rewards/format_reward_func": 0.9713541865348816,
|
763 |
+
"step": 116
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"completion_length": 377.5989694595337,
|
767 |
+
"epoch": 0.06293333333333333,
|
768 |
+
"grad_norm": 0.1258891080084215,
|
769 |
+
"kl": 0.1126708984375,
|
770 |
+
"learning_rate": 4.3302941560111716e-07,
|
771 |
+
"loss": 0.0001,
|
772 |
+
"reward": 1.3880208656191826,
|
773 |
+
"reward_std": 0.29082584474235773,
|
774 |
+
"rewards/equation_reward_func": 0.4192708428017795,
|
775 |
+
"rewards/format_reward_func": 0.9687500149011612,
|
776 |
+
"step": 118
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"completion_length": 406.2239742279053,
|
780 |
+
"epoch": 0.064,
|
781 |
+
"grad_norm": 0.07341804992437591,
|
782 |
+
"kl": 0.094940185546875,
|
783 |
+
"learning_rate": 4.3055638489198236e-07,
|
784 |
+
"loss": 0.0001,
|
785 |
+
"reward": 1.3072916977107525,
|
786 |
+
"reward_std": 0.3007106310687959,
|
787 |
+
"rewards/equation_reward_func": 0.3359375118743628,
|
788 |
+
"rewards/format_reward_func": 0.9713541865348816,
|
789 |
+
"step": 120
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"completion_length": 440.3489694595337,
|
793 |
+
"epoch": 0.06506666666666666,
|
794 |
+
"grad_norm": 0.07202980759381214,
|
795 |
+
"kl": 0.102081298828125,
|
796 |
+
"learning_rate": 4.280458575653296e-07,
|
797 |
+
"loss": 0.0001,
|
798 |
+
"reward": 1.2942708879709244,
|
799 |
+
"reward_std": 0.2781888456083834,
|
800 |
+
"rewards/equation_reward_func": 0.34635417629033327,
|
801 |
+
"rewards/format_reward_func": 0.9479166828095913,
|
802 |
+
"step": 122
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"completion_length": 373.723970413208,
|
806 |
+
"epoch": 0.06613333333333334,
|
807 |
+
"grad_norm": 0.12005799306967507,
|
808 |
+
"kl": 0.109588623046875,
|
809 |
+
"learning_rate": 4.2549835498894665e-07,
|
810 |
+
"loss": 0.0001,
|
811 |
+
"reward": 1.3619792126119137,
|
812 |
+
"reward_std": 0.30349841713905334,
|
813 |
+
"rewards/equation_reward_func": 0.39583334419876337,
|
814 |
+
"rewards/format_reward_func": 0.9661458544433117,
|
815 |
+
"step": 124
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"completion_length": 424.8880310058594,
|
819 |
+
"epoch": 0.0672,
|
820 |
+
"grad_norm": 0.08141812528362076,
|
821 |
+
"kl": 0.11883544921875,
|
822 |
+
"learning_rate": 4.229144062093679e-07,
|
823 |
+
"loss": 0.0001,
|
824 |
+
"reward": 1.3072916939854622,
|
825 |
+
"reward_std": 0.34696589363738894,
|
826 |
+
"rewards/equation_reward_func": 0.37760417303070426,
|
827 |
+
"rewards/format_reward_func": 0.9296875186264515,
|
828 |
+
"step": 126
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"completion_length": 425.73959732055664,
|
832 |
+
"epoch": 0.06826666666666667,
|
833 |
+
"grad_norm": 0.08953036809534468,
|
834 |
+
"kl": 0.10595703125,
|
835 |
+
"learning_rate": 4.2029454784200675e-07,
|
836 |
+
"loss": 0.0001,
|
837 |
+
"reward": 1.3203125335276127,
|
838 |
+
"reward_std": 0.2961498526856303,
|
839 |
+
"rewards/equation_reward_func": 0.3697916716337204,
|
840 |
+
"rewards/format_reward_func": 0.9505208544433117,
|
841 |
+
"step": 128
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"completion_length": 456.8411560058594,
|
845 |
+
"epoch": 0.06933333333333333,
|
846 |
+
"grad_norm": 0.10202840286205975,
|
847 |
+
"kl": 0.128875732421875,
|
848 |
+
"learning_rate": 4.1763932395971433e-07,
|
849 |
+
"loss": 0.0001,
|
850 |
+
"reward": 1.2786458767950535,
|
851 |
+
"reward_std": 0.3274143426679075,
|
852 |
+
"rewards/equation_reward_func": 0.3463541774544865,
|
853 |
+
"rewards/format_reward_func": 0.9322916902601719,
|
854 |
+
"step": 130
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"completion_length": 391.82552909851074,
|
858 |
+
"epoch": 0.0704,
|
859 |
+
"grad_norm": 0.09343731649452018,
|
860 |
+
"kl": 0.116180419921875,
|
861 |
+
"learning_rate": 4.1494928597979117e-07,
|
862 |
+
"loss": 0.0001,
|
863 |
+
"reward": 1.4427083693444729,
|
864 |
+
"reward_std": 0.2739125872030854,
|
865 |
+
"rewards/equation_reward_func": 0.48958334792405367,
|
866 |
+
"rewards/format_reward_func": 0.9531250149011612,
|
867 |
+
"step": 132
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"completion_length": 431.3073043823242,
|
871 |
+
"epoch": 0.07146666666666666,
|
872 |
+
"grad_norm": 0.09948838006778335,
|
873 |
+
"kl": 0.113861083984375,
|
874 |
+
"learning_rate": 4.122249925494726e-07,
|
875 |
+
"loss": 0.0001,
|
876 |
+
"reward": 1.3281250447034836,
|
877 |
+
"reward_std": 0.267287774477154,
|
878 |
+
"rewards/equation_reward_func": 0.37239584675990045,
|
879 |
+
"rewards/format_reward_func": 0.955729179084301,
|
880 |
+
"step": 134
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"completion_length": 422.07032203674316,
|
884 |
+
"epoch": 0.07253333333333334,
|
885 |
+
"grad_norm": 0.07206798558431624,
|
886 |
+
"kl": 0.13238525390625,
|
887 |
+
"learning_rate": 4.094670094299131e-07,
|
888 |
+
"loss": 0.0001,
|
889 |
+
"reward": 1.3750000409781933,
|
890 |
+
"reward_std": 0.2928238473832607,
|
891 |
+
"rewards/equation_reward_func": 0.42447917675599456,
|
892 |
+
"rewards/format_reward_func": 0.9505208544433117,
|
893 |
+
"step": 136
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"completion_length": 443.54688358306885,
|
897 |
+
"epoch": 0.0736,
|
898 |
+
"grad_norm": 0.10976069905088891,
|
899 |
+
"kl": 0.109039306640625,
|
900 |
+
"learning_rate": 4.066759093786931e-07,
|
901 |
+
"loss": 0.0001,
|
902 |
+
"reward": 1.2630208693444729,
|
903 |
+
"reward_std": 0.2776200850494206,
|
904 |
+
"rewards/equation_reward_func": 0.33593750884756446,
|
905 |
+
"rewards/format_reward_func": 0.927083358168602,
|
906 |
+
"step": 138
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"completion_length": 398.4505367279053,
|
910 |
+
"epoch": 0.07466666666666667,
|
911 |
+
"grad_norm": 0.084796835919473,
|
912 |
+
"kl": 0.12408447265625,
|
913 |
+
"learning_rate": 4.038522720308732e-07,
|
914 |
+
"loss": 0.0001,
|
915 |
+
"reward": 1.4375000484287739,
|
916 |
+
"reward_std": 0.2496197698637843,
|
917 |
+
"rewards/equation_reward_func": 0.4739583432674408,
|
918 |
+
"rewards/format_reward_func": 0.9635416902601719,
|
919 |
+
"step": 140
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"completion_length": 375.6875104904175,
|
923 |
+
"epoch": 0.07573333333333333,
|
924 |
+
"grad_norm": 0.06578890547258132,
|
925 |
+
"kl": 0.134796142578125,
|
926 |
+
"learning_rate": 4.009966837786194e-07,
|
927 |
+
"loss": 0.0001,
|
928 |
+
"reward": 1.4114583730697632,
|
929 |
+
"reward_std": 0.2610441828146577,
|
930 |
+
"rewards/equation_reward_func": 0.4453125111758709,
|
931 |
+
"rewards/format_reward_func": 0.9661458507180214,
|
932 |
+
"step": 142
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"completion_length": 368.48959255218506,
|
936 |
+
"epoch": 0.0768,
|
937 |
+
"grad_norm": 0.10902428052363637,
|
938 |
+
"kl": 0.136627197265625,
|
939 |
+
"learning_rate": 3.981097376494259e-07,
|
940 |
+
"loss": 0.0001,
|
941 |
+
"reward": 1.4687500521540642,
|
942 |
+
"reward_std": 0.25434603728353977,
|
943 |
+
"rewards/equation_reward_func": 0.49218752002343535,
|
944 |
+
"rewards/format_reward_func": 0.9765625223517418,
|
945 |
+
"step": 144
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"completion_length": 406.8750114440918,
|
949 |
+
"epoch": 0.07786666666666667,
|
950 |
+
"grad_norm": 0.1079461409291905,
|
951 |
+
"kl": 0.129119873046875,
|
952 |
+
"learning_rate": 3.951920331829592e-07,
|
953 |
+
"loss": 0.0001,
|
954 |
+
"reward": 1.3281250484287739,
|
955 |
+
"reward_std": 0.25655436515808105,
|
956 |
+
"rewards/equation_reward_func": 0.372395841171965,
|
957 |
+
"rewards/format_reward_func": 0.9557291902601719,
|
958 |
+
"step": 146
|
959 |
+
},
|
960 |
+
{
|
961 |
+
"completion_length": 401.2213668823242,
|
962 |
+
"epoch": 0.07893333333333333,
|
963 |
+
"grad_norm": 0.1067111189421742,
|
964 |
+
"kl": 0.132171630859375,
|
965 |
+
"learning_rate": 3.922441763065506e-07,
|
966 |
+
"loss": 0.0001,
|
967 |
+
"reward": 1.3906250447034836,
|
968 |
+
"reward_std": 0.249761619605124,
|
969 |
+
"rewards/equation_reward_func": 0.4270833439659327,
|
970 |
+
"rewards/format_reward_func": 0.9635416902601719,
|
971 |
+
"step": 148
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"completion_length": 450.89844512939453,
|
975 |
+
"epoch": 0.08,
|
976 |
+
"grad_norm": 0.07018564082166065,
|
977 |
+
"kl": 0.112640380859375,
|
978 |
+
"learning_rate": 3.8926677920936093e-07,
|
979 |
+
"loss": 0.0001,
|
980 |
+
"reward": 1.1901042126119137,
|
981 |
+
"reward_std": 0.21367743890732527,
|
982 |
+
"rewards/equation_reward_func": 0.23177083814516664,
|
983 |
+
"rewards/format_reward_func": 0.9583333507180214,
|
984 |
+
"step": 150
|
985 |
+
}
|
986 |
+
],
|
987 |
+
"logging_steps": 2,
|
988 |
+
"max_steps": 450,
|
989 |
+
"num_input_tokens_seen": 0,
|
990 |
+
"num_train_epochs": 1,
|
991 |
+
"save_steps": 25,
|
992 |
+
"stateful_callbacks": {
|
993 |
+
"TrainerControl": {
|
994 |
+
"args": {
|
995 |
+
"should_epoch_stop": false,
|
996 |
+
"should_evaluate": false,
|
997 |
+
"should_log": false,
|
998 |
+
"should_save": true,
|
999 |
+
"should_training_stop": false
|
1000 |
+
},
|
1001 |
+
"attributes": {}
|
1002 |
+
}
|
1003 |
+
},
|
1004 |
+
"total_flos": 0.0,
|
1005 |
+
"train_batch_size": 1,
|
1006 |
+
"trial_name": null,
|
1007 |
+
"trial_params": null
|
1008 |
+
}
|
checkpoint-150/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2f8dfc73276cdf6bf7e415fc836e3b5d7b7c6eef1548834ceef8db36f27a430
|
3 |
+
size 6840
|
checkpoint-150/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-150/zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoint-275/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoint-275/config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 2048,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 11008,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"max_window_layers": 70,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 16,
|
17 |
+
"num_hidden_layers": 36,
|
18 |
+
"num_key_value_heads": 2,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 1000000.0,
|
22 |
+
"sliding_window": null,
|
23 |
+
"tie_word_embeddings": true,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.48.1",
|
26 |
+
"use_cache": false,
|
27 |
+
"use_sliding_window": false,
|
28 |
+
"vocab_size": 151936
|
29 |
+
}
|
checkpoint-275/generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.48.1"
|
14 |
+
}
|
checkpoint-275/global_step275/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88c3703560e4f327856e420e64bb7f889f8da10f4b0aae91cf279e89b2215dbc
|
3 |
+
size 212888
|
checkpoint-275/global_step275/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c4bbee19ca1389ea1b402507d309d68467dbaec536ca783269ac4c7258986e7
|
3 |
+
size 212888
|
checkpoint-275/global_step275/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9a5d48c32d85e36d824b883c68c6a8f2fa338032ccac050eb7f4e8e12936b27
|
3 |
+
size 212888
|
checkpoint-275/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step275
|
checkpoint-275/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-275/model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0495fad36ae09c0ed2f4b9f45f515465dafd04368f0a6382ad39635db66af14d
|
3 |
+
size 4957560304
|
checkpoint-275/model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:278ae651ef44cd2d56638f6a8e238b4699b4640ea9d8f6d9d0e5bda8b35c1fc9
|
3 |
+
size 1214366696
|
checkpoint-275/model.safetensors.index.json
ADDED
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6171877376
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
7 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
260 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
261 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
262 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
263 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
264 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
272 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
273 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
274 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
275 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
276 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
278 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
279 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
281 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
283 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
284 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
295 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
296 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
298 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
300 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
302 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
305 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
307 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
308 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
309 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
310 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
311 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
312 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
314 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
315 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
317 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
319 |
+
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
320 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
321 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
322 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
323 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
326 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
327 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
329 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
331 |
+
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
332 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
334 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
335 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
336 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
338 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
339 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
341 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
343 |
+
"model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
344 |
+
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
345 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
346 |
+
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
347 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
348 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
350 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
351 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
353 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
355 |
+
"model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
356 |
+
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
357 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
358 |
+
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
359 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
360 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
362 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
363 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
365 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
367 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
368 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
369 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
370 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
371 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
372 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
373 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
374 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
376 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
377 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
378 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
379 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
380 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
382 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
384 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
385 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
386 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
388 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
389 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
390 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
391 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
392 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
394 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
395 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
396 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
397 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
398 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
399 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
400 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
401 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
402 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
403 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
404 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
405 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
406 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
407 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
408 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
409 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
410 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
411 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
412 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
413 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
414 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
415 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
416 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
417 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
418 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
419 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
420 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
421 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
422 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
423 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
424 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
425 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
426 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
427 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
428 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
429 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
430 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
431 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
432 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
433 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
434 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
435 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
436 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
437 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
438 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
439 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
440 |
+
}
|
441 |
+
}
|
checkpoint-275/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da9f5db414b5b571af32797903bdeec8c8cf9faadfb0580745a951ba494abf4a
|
3 |
+
size 14960
|
checkpoint-275/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb2677d6cffe4369668d1b7db8734e625e74f8f6c2f6d3cf1494e6ccaf08e668
|
3 |
+
size 14960
|
checkpoint-275/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd5e61f1ce2293771d7e40ff3ec3d3641e925791610e2093258f5b9df3b8bb28
|
3 |
+
size 15024
|
checkpoint-275/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a832adeab5480d6809ca338cf94c1217d1888ffcf7c1fe5caccfe5cbd4db20b
|
3 |
+
size 1064
|
checkpoint-275/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-275/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
|
3 |
+
size 11422063
|
checkpoint-275/tokenizer_config.json
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"padding_side": "left",
|
206 |
+
"split_special_tokens": false,
|
207 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
208 |
+
"unk_token": null
|
209 |
+
}
|
checkpoint-275/trainer_state.json
ADDED
@@ -0,0 +1,1814 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.14666666666666667,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 275,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"completion_length": 485.49220275878906,
|
13 |
+
"epoch": 0.0010666666666666667,
|
14 |
+
"grad_norm": 0.13112049806907955,
|
15 |
+
"kl": 0.0,
|
16 |
+
"learning_rate": 7.142857142857142e-08,
|
17 |
+
"loss": -0.0,
|
18 |
+
"reward": 0.3281250111758709,
|
19 |
+
"reward_std": 0.4913413915783167,
|
20 |
+
"rewards/equation_reward_func": 0.05729166814126074,
|
21 |
+
"rewards/format_reward_func": 0.27083334047347307,
|
22 |
+
"step": 2
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"completion_length": 530.2265796661377,
|
26 |
+
"epoch": 0.0021333333333333334,
|
27 |
+
"grad_norm": 0.12198138838063947,
|
28 |
+
"kl": 0.0003826618194580078,
|
29 |
+
"learning_rate": 1.4285714285714285e-07,
|
30 |
+
"loss": 0.0,
|
31 |
+
"reward": 0.299479172565043,
|
32 |
+
"reward_std": 0.44007157534360886,
|
33 |
+
"rewards/equation_reward_func": 0.03385416744276881,
|
34 |
+
"rewards/format_reward_func": 0.26562500977888703,
|
35 |
+
"step": 4
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"completion_length": 496.8776264190674,
|
39 |
+
"epoch": 0.0032,
|
40 |
+
"grad_norm": 0.12162717174644112,
|
41 |
+
"kl": 0.0003865957260131836,
|
42 |
+
"learning_rate": 2.1428571428571426e-07,
|
43 |
+
"loss": 0.0,
|
44 |
+
"reward": 0.2916666781529784,
|
45 |
+
"reward_std": 0.47719811648130417,
|
46 |
+
"rewards/equation_reward_func": 0.05468750116415322,
|
47 |
+
"rewards/format_reward_func": 0.23697917303070426,
|
48 |
+
"step": 6
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"completion_length": 504.77865982055664,
|
52 |
+
"epoch": 0.004266666666666667,
|
53 |
+
"grad_norm": 0.13232346241260942,
|
54 |
+
"kl": 0.0003762245178222656,
|
55 |
+
"learning_rate": 2.857142857142857e-07,
|
56 |
+
"loss": 0.0,
|
57 |
+
"reward": 0.33593750558793545,
|
58 |
+
"reward_std": 0.4751614350825548,
|
59 |
+
"rewards/equation_reward_func": 0.04947916720993817,
|
60 |
+
"rewards/format_reward_func": 0.28645834140479565,
|
61 |
+
"step": 8
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"completion_length": 475.7057456970215,
|
65 |
+
"epoch": 0.005333333333333333,
|
66 |
+
"grad_norm": 0.13843718324607834,
|
67 |
+
"kl": 0.0003968477249145508,
|
68 |
+
"learning_rate": 3.5714285714285716e-07,
|
69 |
+
"loss": 0.0,
|
70 |
+
"reward": 0.3828125102445483,
|
71 |
+
"reward_std": 0.5227206833660603,
|
72 |
+
"rewards/equation_reward_func": 0.0885416679084301,
|
73 |
+
"rewards/format_reward_func": 0.2942708395421505,
|
74 |
+
"step": 10
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"completion_length": 475.98699378967285,
|
78 |
+
"epoch": 0.0064,
|
79 |
+
"grad_norm": 0.14337833822484186,
|
80 |
+
"kl": 0.0004818439483642578,
|
81 |
+
"learning_rate": 4.285714285714285e-07,
|
82 |
+
"loss": 0.0,
|
83 |
+
"reward": 0.33333334140479565,
|
84 |
+
"reward_std": 0.4693184234201908,
|
85 |
+
"rewards/equation_reward_func": 0.05468750139698386,
|
86 |
+
"rewards/format_reward_func": 0.2786458395421505,
|
87 |
+
"step": 12
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"completion_length": 472.8099060058594,
|
91 |
+
"epoch": 0.007466666666666667,
|
92 |
+
"grad_norm": 0.129867140491159,
|
93 |
+
"kl": 0.0007684230804443359,
|
94 |
+
"learning_rate": 5e-07,
|
95 |
+
"loss": 0.0,
|
96 |
+
"reward": 0.45052084885537624,
|
97 |
+
"reward_std": 0.5166866518557072,
|
98 |
+
"rewards/equation_reward_func": 0.041666667675599456,
|
99 |
+
"rewards/format_reward_func": 0.40885418094694614,
|
100 |
+
"step": 14
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"completion_length": 464.46875762939453,
|
104 |
+
"epoch": 0.008533333333333334,
|
105 |
+
"grad_norm": 0.1279190002551803,
|
106 |
+
"kl": 0.0013058185577392578,
|
107 |
+
"learning_rate": 4.999740409224932e-07,
|
108 |
+
"loss": 0.0,
|
109 |
+
"reward": 0.5052083488553762,
|
110 |
+
"reward_std": 0.5728582534939051,
|
111 |
+
"rewards/equation_reward_func": 0.06510416814126074,
|
112 |
+
"rewards/format_reward_func": 0.4401041753590107,
|
113 |
+
"step": 16
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"completion_length": 480.2291717529297,
|
117 |
+
"epoch": 0.0096,
|
118 |
+
"grad_norm": 0.10647649710010443,
|
119 |
+
"kl": 0.00380706787109375,
|
120 |
+
"learning_rate": 4.998961690809627e-07,
|
121 |
+
"loss": 0.0,
|
122 |
+
"reward": 0.6588541902601719,
|
123 |
+
"reward_std": 0.5287479311227798,
|
124 |
+
"rewards/equation_reward_func": 0.05468750139698386,
|
125 |
+
"rewards/format_reward_func": 0.6041666828095913,
|
126 |
+
"step": 18
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"completion_length": 493.8073043823242,
|
130 |
+
"epoch": 0.010666666666666666,
|
131 |
+
"grad_norm": 0.10522760864642984,
|
132 |
+
"kl": 0.004913330078125,
|
133 |
+
"learning_rate": 4.997664006472578e-07,
|
134 |
+
"loss": 0.0,
|
135 |
+
"reward": 0.7734375223517418,
|
136 |
+
"reward_std": 0.4910791157744825,
|
137 |
+
"rewards/equation_reward_func": 0.07031250116415322,
|
138 |
+
"rewards/format_reward_func": 0.7031250186264515,
|
139 |
+
"step": 20
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"completion_length": 455.6510524749756,
|
143 |
+
"epoch": 0.011733333333333333,
|
144 |
+
"grad_norm": 0.09917661844432689,
|
145 |
+
"kl": 0.008411407470703125,
|
146 |
+
"learning_rate": 4.995847625707292e-07,
|
147 |
+
"loss": 0.0,
|
148 |
+
"reward": 0.7812500186264515,
|
149 |
+
"reward_std": 0.4674575887620449,
|
150 |
+
"rewards/equation_reward_func": 0.0651041679084301,
|
151 |
+
"rewards/format_reward_func": 0.7161458507180214,
|
152 |
+
"step": 22
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"completion_length": 464.50782012939453,
|
156 |
+
"epoch": 0.0128,
|
157 |
+
"grad_norm": 0.10189992043189328,
|
158 |
+
"kl": 0.0059833526611328125,
|
159 |
+
"learning_rate": 4.993512925726318e-07,
|
160 |
+
"loss": 0.0,
|
161 |
+
"reward": 0.8619791865348816,
|
162 |
+
"reward_std": 0.49650320410728455,
|
163 |
+
"rewards/equation_reward_func": 0.08854166860692203,
|
164 |
+
"rewards/format_reward_func": 0.7734375223517418,
|
165 |
+
"step": 24
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"completion_length": 447.40626335144043,
|
169 |
+
"epoch": 0.013866666666666666,
|
170 |
+
"grad_norm": 0.09219816177682034,
|
171 |
+
"kl": 0.006900787353515625,
|
172 |
+
"learning_rate": 4.990660391382923e-07,
|
173 |
+
"loss": 0.0,
|
174 |
+
"reward": 0.960937537252903,
|
175 |
+
"reward_std": 0.4377214591950178,
|
176 |
+
"rewards/equation_reward_func": 0.11718750256113708,
|
177 |
+
"rewards/format_reward_func": 0.8437500260770321,
|
178 |
+
"step": 26
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"completion_length": 436.3099117279053,
|
182 |
+
"epoch": 0.014933333333333333,
|
183 |
+
"grad_norm": 0.07907793746945187,
|
184 |
+
"kl": 0.009281158447265625,
|
185 |
+
"learning_rate": 4.987290615070384e-07,
|
186 |
+
"loss": 0.0,
|
187 |
+
"reward": 0.9713542014360428,
|
188 |
+
"reward_std": 0.3975960807874799,
|
189 |
+
"rewards/equation_reward_func": 0.09895833535119891,
|
190 |
+
"rewards/format_reward_func": 0.872395858168602,
|
191 |
+
"step": 28
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"completion_length": 428.1354293823242,
|
195 |
+
"epoch": 0.016,
|
196 |
+
"grad_norm": 0.0845150241699145,
|
197 |
+
"kl": 0.011430740356445312,
|
198 |
+
"learning_rate": 4.983404296598978e-07,
|
199 |
+
"loss": 0.0,
|
200 |
+
"reward": 0.9531250298023224,
|
201 |
+
"reward_std": 0.359499204903841,
|
202 |
+
"rewards/equation_reward_func": 0.0703125016298145,
|
203 |
+
"rewards/format_reward_func": 0.8828125223517418,
|
204 |
+
"step": 30
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"completion_length": 434.62500953674316,
|
208 |
+
"epoch": 0.017066666666666667,
|
209 |
+
"grad_norm": 0.08196142586101564,
|
210 |
+
"kl": 0.010782241821289062,
|
211 |
+
"learning_rate": 4.979002243050646e-07,
|
212 |
+
"loss": 0.0,
|
213 |
+
"reward": 1.0260416977107525,
|
214 |
+
"reward_std": 0.30062979739159346,
|
215 |
+
"rewards/equation_reward_func": 0.09635416860692203,
|
216 |
+
"rewards/format_reward_func": 0.9296875260770321,
|
217 |
+
"step": 32
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"completion_length": 438.08595085144043,
|
221 |
+
"epoch": 0.018133333333333335,
|
222 |
+
"grad_norm": 0.08432790923176402,
|
223 |
+
"kl": 0.012115478515625,
|
224 |
+
"learning_rate": 4.974085368611381e-07,
|
225 |
+
"loss": 0.0,
|
226 |
+
"reward": 1.049479205161333,
|
227 |
+
"reward_std": 0.3121222285553813,
|
228 |
+
"rewards/equation_reward_func": 0.11197917000390589,
|
229 |
+
"rewards/format_reward_func": 0.9375000223517418,
|
230 |
+
"step": 34
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"completion_length": 421.16407203674316,
|
234 |
+
"epoch": 0.0192,
|
235 |
+
"grad_norm": 0.080639508238748,
|
236 |
+
"kl": 0.01397705078125,
|
237 |
+
"learning_rate": 4.968654694381379e-07,
|
238 |
+
"loss": 0.0,
|
239 |
+
"reward": 1.0598958618938923,
|
240 |
+
"reward_std": 0.27779901027679443,
|
241 |
+
"rewards/equation_reward_func": 0.10416666907258332,
|
242 |
+
"rewards/format_reward_func": 0.9557291865348816,
|
243 |
+
"step": 36
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"completion_length": 405.12240982055664,
|
247 |
+
"epoch": 0.020266666666666665,
|
248 |
+
"grad_norm": 0.07681322754981268,
|
249 |
+
"kl": 0.013866424560546875,
|
250 |
+
"learning_rate": 4.962711348162987e-07,
|
251 |
+
"loss": 0.0,
|
252 |
+
"reward": 1.0390625409781933,
|
253 |
+
"reward_std": 0.2664716215804219,
|
254 |
+
"rewards/equation_reward_func": 0.08593750279396772,
|
255 |
+
"rewards/format_reward_func": 0.9531250186264515,
|
256 |
+
"step": 38
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"completion_length": 400.0104274749756,
|
260 |
+
"epoch": 0.021333333333333333,
|
261 |
+
"grad_norm": 0.08198714493646655,
|
262 |
+
"kl": 0.015293121337890625,
|
263 |
+
"learning_rate": 4.956256564226487e-07,
|
264 |
+
"loss": 0.0,
|
265 |
+
"reward": 1.1067708730697632,
|
266 |
+
"reward_std": 0.28682188084349036,
|
267 |
+
"rewards/equation_reward_func": 0.14322917023673654,
|
268 |
+
"rewards/format_reward_func": 0.9635416828095913,
|
269 |
+
"step": 40
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"completion_length": 400.78386306762695,
|
273 |
+
"epoch": 0.0224,
|
274 |
+
"grad_norm": 0.0855015587257399,
|
275 |
+
"kl": 0.018611907958984375,
|
276 |
+
"learning_rate": 4.949291683053768e-07,
|
277 |
+
"loss": 0.0,
|
278 |
+
"reward": 1.0937500223517418,
|
279 |
+
"reward_std": 0.24716421775519848,
|
280 |
+
"rewards/equation_reward_func": 0.11197916930541396,
|
281 |
+
"rewards/format_reward_func": 0.9817708469927311,
|
282 |
+
"step": 42
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"completion_length": 408.34115409851074,
|
286 |
+
"epoch": 0.023466666666666667,
|
287 |
+
"grad_norm": 0.07249139521720419,
|
288 |
+
"kl": 0.017139434814453125,
|
289 |
+
"learning_rate": 4.941818151059955e-07,
|
290 |
+
"loss": 0.0,
|
291 |
+
"reward": 1.0546875298023224,
|
292 |
+
"reward_std": 0.24979113461449742,
|
293 |
+
"rewards/equation_reward_func": 0.0963541695382446,
|
294 |
+
"rewards/format_reward_func": 0.9583333544433117,
|
295 |
+
"step": 44
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"completion_length": 388.62761306762695,
|
299 |
+
"epoch": 0.024533333333333334,
|
300 |
+
"grad_norm": 0.07507762465990464,
|
301 |
+
"kl": 0.017795562744140625,
|
302 |
+
"learning_rate": 4.933837520293017e-07,
|
303 |
+
"loss": 0.0,
|
304 |
+
"reward": 1.0781250484287739,
|
305 |
+
"reward_std": 0.2523620016872883,
|
306 |
+
"rewards/equation_reward_func": 0.11197917046956718,
|
307 |
+
"rewards/format_reward_func": 0.9661458507180214,
|
308 |
+
"step": 46
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"completion_length": 399.57032585144043,
|
312 |
+
"epoch": 0.0256,
|
313 |
+
"grad_norm": 0.06604121980517051,
|
314 |
+
"kl": 0.017971038818359375,
|
315 |
+
"learning_rate": 4.925351448111454e-07,
|
316 |
+
"loss": 0.0,
|
317 |
+
"reward": 1.0468750335276127,
|
318 |
+
"reward_std": 0.21127380011603236,
|
319 |
+
"rewards/equation_reward_func": 0.07552083511836827,
|
320 |
+
"rewards/format_reward_func": 0.9713541865348816,
|
321 |
+
"step": 48
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"completion_length": 392.4687557220459,
|
325 |
+
"epoch": 0.02666666666666667,
|
326 |
+
"grad_norm": 0.0903310628098169,
|
327 |
+
"kl": 0.0193939208984375,
|
328 |
+
"learning_rate": 4.91636169684011e-07,
|
329 |
+
"loss": 0.0,
|
330 |
+
"reward": 1.1093750409781933,
|
331 |
+
"reward_std": 0.29062134958803654,
|
332 |
+
"rewards/equation_reward_func": 0.13541667209938169,
|
333 |
+
"rewards/format_reward_func": 0.9739583432674408,
|
334 |
+
"step": 50
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"completion_length": 374.1067810058594,
|
338 |
+
"epoch": 0.027733333333333332,
|
339 |
+
"grad_norm": 0.07170688038365744,
|
340 |
+
"kl": 0.02114105224609375,
|
341 |
+
"learning_rate": 4.906870133404186e-07,
|
342 |
+
"loss": 0.0,
|
343 |
+
"reward": 1.0833333693444729,
|
344 |
+
"reward_std": 0.2505181049928069,
|
345 |
+
"rewards/equation_reward_func": 0.11458333535119891,
|
346 |
+
"rewards/format_reward_func": 0.9687500074505806,
|
347 |
+
"step": 52
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"completion_length": 385.36980056762695,
|
351 |
+
"epoch": 0.0288,
|
352 |
+
"grad_norm": 0.08750349012682264,
|
353 |
+
"kl": 0.02417755126953125,
|
354 |
+
"learning_rate": 4.896878728941531e-07,
|
355 |
+
"loss": 0.0,
|
356 |
+
"reward": 1.1432292014360428,
|
357 |
+
"reward_std": 0.3026517196558416,
|
358 |
+
"rewards/equation_reward_func": 0.16666667186655104,
|
359 |
+
"rewards/format_reward_func": 0.9765625186264515,
|
360 |
+
"step": 54
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"completion_length": 382.93751335144043,
|
364 |
+
"epoch": 0.029866666666666666,
|
365 |
+
"grad_norm": 0.08790417727425984,
|
366 |
+
"kl": 0.018756866455078125,
|
367 |
+
"learning_rate": 4.886389558393284e-07,
|
368 |
+
"loss": 0.0,
|
369 |
+
"reward": 1.1223958693444729,
|
370 |
+
"reward_std": 0.2850013840943575,
|
371 |
+
"rewards/equation_reward_func": 0.14322917023673654,
|
372 |
+
"rewards/format_reward_func": 0.979166679084301,
|
373 |
+
"step": 56
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"completion_length": 403.513032913208,
|
377 |
+
"epoch": 0.030933333333333334,
|
378 |
+
"grad_norm": 0.07614614875477466,
|
379 |
+
"kl": 0.02037811279296875,
|
380 |
+
"learning_rate": 4.875404800072976e-07,
|
381 |
+
"loss": 0.0,
|
382 |
+
"reward": 1.1432292088866234,
|
383 |
+
"reward_std": 0.2669796203263104,
|
384 |
+
"rewards/equation_reward_func": 0.16145833977498114,
|
385 |
+
"rewards/format_reward_func": 0.9817708469927311,
|
386 |
+
"step": 58
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"completion_length": 382.6432418823242,
|
390 |
+
"epoch": 0.032,
|
391 |
+
"grad_norm": 0.0923539372935242,
|
392 |
+
"kl": 0.02227783203125,
|
393 |
+
"learning_rate": 4.86392673521415e-07,
|
394 |
+
"loss": 0.0,
|
395 |
+
"reward": 1.1536458693444729,
|
396 |
+
"reward_std": 0.31879409588873386,
|
397 |
+
"rewards/equation_reward_func": 0.1796875053551048,
|
398 |
+
"rewards/format_reward_func": 0.9739583432674408,
|
399 |
+
"step": 60
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"completion_length": 358.4349060058594,
|
403 |
+
"epoch": 0.03306666666666667,
|
404 |
+
"grad_norm": 0.10173008574938576,
|
405 |
+
"kl": 0.02350616455078125,
|
406 |
+
"learning_rate": 4.851957747496606e-07,
|
407 |
+
"loss": 0.0,
|
408 |
+
"reward": 1.1562500447034836,
|
409 |
+
"reward_std": 0.2772155348211527,
|
410 |
+
"rewards/equation_reward_func": 0.16927083814516664,
|
411 |
+
"rewards/format_reward_func": 0.9869791753590107,
|
412 |
+
"step": 62
|
413 |
+
},
|
414 |
+
{
|
415 |
+
"completion_length": 364.18490409851074,
|
416 |
+
"epoch": 0.034133333333333335,
|
417 |
+
"grad_norm": 0.08496355305518047,
|
418 |
+
"kl": 0.02630615234375,
|
419 |
+
"learning_rate": 4.839500322551386e-07,
|
420 |
+
"loss": 0.0,
|
421 |
+
"reward": 1.1093750447034836,
|
422 |
+
"reward_std": 0.24286148557439446,
|
423 |
+
"rewards/equation_reward_func": 0.12760417093522847,
|
424 |
+
"rewards/format_reward_func": 0.9817708432674408,
|
425 |
+
"step": 64
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"completion_length": 373.833345413208,
|
429 |
+
"epoch": 0.0352,
|
430 |
+
"grad_norm": 0.09458816516251609,
|
431 |
+
"kl": 0.02667999267578125,
|
432 |
+
"learning_rate": 4.826557047444563e-07,
|
433 |
+
"loss": 0.0,
|
434 |
+
"reward": 1.1848958656191826,
|
435 |
+
"reward_std": 0.3138170298188925,
|
436 |
+
"rewards/equation_reward_func": 0.20572917233221233,
|
437 |
+
"rewards/format_reward_func": 0.979166679084301,
|
438 |
+
"step": 66
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"completion_length": 352.2083435058594,
|
442 |
+
"epoch": 0.03626666666666667,
|
443 |
+
"grad_norm": 0.08416786947789269,
|
444 |
+
"kl": 0.03083038330078125,
|
445 |
+
"learning_rate": 4.813130610139993e-07,
|
446 |
+
"loss": 0.0,
|
447 |
+
"reward": 1.1744792088866234,
|
448 |
+
"reward_std": 0.2558550937101245,
|
449 |
+
"rewards/equation_reward_func": 0.18489583861082792,
|
450 |
+
"rewards/format_reward_func": 0.9895833432674408,
|
451 |
+
"step": 68
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"completion_length": 377.62500953674316,
|
455 |
+
"epoch": 0.037333333333333336,
|
456 |
+
"grad_norm": 0.07539913544982475,
|
457 |
+
"kl": 0.03000640869140625,
|
458 |
+
"learning_rate": 4.799223798941089e-07,
|
459 |
+
"loss": 0.0,
|
460 |
+
"reward": 1.070312537252903,
|
461 |
+
"reward_std": 0.17193882586434484,
|
462 |
+
"rewards/equation_reward_func": 0.08072916814126074,
|
463 |
+
"rewards/format_reward_func": 0.9895833432674408,
|
464 |
+
"step": 70
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"completion_length": 370.4531364440918,
|
468 |
+
"epoch": 0.0384,
|
469 |
+
"grad_norm": 0.09187391682605524,
|
470 |
+
"kl": 0.03436279296875,
|
471 |
+
"learning_rate": 4.78483950191177e-07,
|
472 |
+
"loss": 0.0,
|
473 |
+
"reward": 1.1562500298023224,
|
474 |
+
"reward_std": 0.2756755482405424,
|
475 |
+
"rewards/equation_reward_func": 0.1770833362825215,
|
476 |
+
"rewards/format_reward_func": 0.979166679084301,
|
477 |
+
"step": 72
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"completion_length": 373.04688453674316,
|
481 |
+
"epoch": 0.039466666666666664,
|
482 |
+
"grad_norm": 0.09537515327502834,
|
483 |
+
"kl": 0.03740692138671875,
|
484 |
+
"learning_rate": 4.769980706276687e-07,
|
485 |
+
"loss": 0.0,
|
486 |
+
"reward": 1.1354167088866234,
|
487 |
+
"reward_std": 0.25582731096073985,
|
488 |
+
"rewards/equation_reward_func": 0.15885417256504297,
|
489 |
+
"rewards/format_reward_func": 0.9765625186264515,
|
490 |
+
"step": 74
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"completion_length": 387.8567810058594,
|
494 |
+
"epoch": 0.04053333333333333,
|
495 |
+
"grad_norm": 0.08000596022141122,
|
496 |
+
"kl": 0.0389404296875,
|
497 |
+
"learning_rate": 4.7546504978008595e-07,
|
498 |
+
"loss": 0.0,
|
499 |
+
"reward": 1.1328125335276127,
|
500 |
+
"reward_std": 0.30721960263326764,
|
501 |
+
"rewards/equation_reward_func": 0.1666666700039059,
|
502 |
+
"rewards/format_reward_func": 0.9661458507180214,
|
503 |
+
"step": 76
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"completion_length": 390.2448024749756,
|
507 |
+
"epoch": 0.0416,
|
508 |
+
"grad_norm": 0.07863626089779173,
|
509 |
+
"kl": 0.0442047119140625,
|
510 |
+
"learning_rate": 4.738852060148848e-07,
|
511 |
+
"loss": 0.0,
|
512 |
+
"reward": 1.127604205161333,
|
513 |
+
"reward_std": 0.26901706866919994,
|
514 |
+
"rewards/equation_reward_func": 0.15364583814516664,
|
515 |
+
"rewards/format_reward_func": 0.9739583507180214,
|
516 |
+
"step": 78
|
517 |
+
},
|
518 |
+
{
|
519 |
+
"completion_length": 379.2161521911621,
|
520 |
+
"epoch": 0.042666666666666665,
|
521 |
+
"grad_norm": 0.08601071973954262,
|
522 |
+
"kl": 0.0434417724609375,
|
523 |
+
"learning_rate": 4.722588674223593e-07,
|
524 |
+
"loss": 0.0,
|
525 |
+
"reward": 1.1380208656191826,
|
526 |
+
"reward_std": 0.2812240272760391,
|
527 |
+
"rewards/equation_reward_func": 0.164062503259629,
|
528 |
+
"rewards/format_reward_func": 0.9739583469927311,
|
529 |
+
"step": 80
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"completion_length": 371.59115409851074,
|
533 |
+
"epoch": 0.04373333333333333,
|
534 |
+
"grad_norm": 0.07568126962421509,
|
535 |
+
"kl": 0.0497894287109375,
|
536 |
+
"learning_rate": 4.70586371748506e-07,
|
537 |
+
"loss": 0.0,
|
538 |
+
"reward": 1.1380208656191826,
|
539 |
+
"reward_std": 0.25603401800617576,
|
540 |
+
"rewards/equation_reward_func": 0.15885417070239782,
|
541 |
+
"rewards/format_reward_func": 0.9791666828095913,
|
542 |
+
"step": 82
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"completion_length": 381.30469703674316,
|
546 |
+
"epoch": 0.0448,
|
547 |
+
"grad_norm": 0.08065111561901392,
|
548 |
+
"kl": 0.0525665283203125,
|
549 |
+
"learning_rate": 4.6886806632488363e-07,
|
550 |
+
"loss": 0.0001,
|
551 |
+
"reward": 1.169270858168602,
|
552 |
+
"reward_std": 0.25962691847234964,
|
553 |
+
"rewards/equation_reward_func": 0.19531250419095159,
|
554 |
+
"rewards/format_reward_func": 0.9739583432674408,
|
555 |
+
"step": 84
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"completion_length": 350.8020944595337,
|
559 |
+
"epoch": 0.04586666666666667,
|
560 |
+
"grad_norm": 0.09857801804683694,
|
561 |
+
"kl": 0.0528717041015625,
|
562 |
+
"learning_rate": 4.6710430799648143e-07,
|
563 |
+
"loss": 0.0001,
|
564 |
+
"reward": 1.1796875447034836,
|
565 |
+
"reward_std": 0.2887058644555509,
|
566 |
+
"rewards/equation_reward_func": 0.1979166748933494,
|
567 |
+
"rewards/format_reward_func": 0.9817708507180214,
|
568 |
+
"step": 86
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"completion_length": 353.0573024749756,
|
572 |
+
"epoch": 0.046933333333333334,
|
573 |
+
"grad_norm": 0.09077630030450431,
|
574 |
+
"kl": 0.059906005859375,
|
575 |
+
"learning_rate": 4.652954630476127e-07,
|
576 |
+
"loss": 0.0001,
|
577 |
+
"reward": 1.2239583730697632,
|
578 |
+
"reward_std": 0.30759388813748956,
|
579 |
+
"rewards/equation_reward_func": 0.2500000069849193,
|
580 |
+
"rewards/format_reward_func": 0.9739583507180214,
|
581 |
+
"step": 88
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"completion_length": 359.1666784286499,
|
585 |
+
"epoch": 0.048,
|
586 |
+
"grad_norm": 0.09945645690703775,
|
587 |
+
"kl": 0.0612030029296875,
|
588 |
+
"learning_rate": 4.6344190712584713e-07,
|
589 |
+
"loss": 0.0001,
|
590 |
+
"reward": 1.2630208805203438,
|
591 |
+
"reward_std": 0.27152396691963077,
|
592 |
+
"rewards/equation_reward_func": 0.27604167466051877,
|
593 |
+
"rewards/format_reward_func": 0.9869791753590107,
|
594 |
+
"step": 90
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"completion_length": 349.7083396911621,
|
598 |
+
"epoch": 0.04906666666666667,
|
599 |
+
"grad_norm": 0.08132855652754273,
|
600 |
+
"kl": 0.06951904296875,
|
601 |
+
"learning_rate": 4.615440251639995e-07,
|
602 |
+
"loss": 0.0001,
|
603 |
+
"reward": 1.2395833656191826,
|
604 |
+
"reward_std": 0.23549415357410908,
|
605 |
+
"rewards/equation_reward_func": 0.25520834024064243,
|
606 |
+
"rewards/format_reward_func": 0.9843750074505806,
|
607 |
+
"step": 92
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"completion_length": 340.52084159851074,
|
611 |
+
"epoch": 0.050133333333333335,
|
612 |
+
"grad_norm": 0.08537044318099979,
|
613 |
+
"kl": 0.075592041015625,
|
614 |
+
"learning_rate": 4.596022113001894e-07,
|
615 |
+
"loss": 0.0001,
|
616 |
+
"reward": 1.2916667014360428,
|
617 |
+
"reward_std": 0.3320260518230498,
|
618 |
+
"rewards/equation_reward_func": 0.312500006519258,
|
619 |
+
"rewards/format_reward_func": 0.9791666828095913,
|
620 |
+
"step": 94
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"completion_length": 327.13282012939453,
|
624 |
+
"epoch": 0.0512,
|
625 |
+
"grad_norm": 0.09240179037114699,
|
626 |
+
"kl": 0.070465087890625,
|
627 |
+
"learning_rate": 4.576168687959895e-07,
|
628 |
+
"loss": 0.0001,
|
629 |
+
"reward": 1.3255208805203438,
|
630 |
+
"reward_std": 0.386608456261456,
|
631 |
+
"rewards/equation_reward_func": 0.3567708469927311,
|
632 |
+
"rewards/format_reward_func": 0.9687500074505806,
|
633 |
+
"step": 96
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"completion_length": 364.68751335144043,
|
637 |
+
"epoch": 0.05226666666666667,
|
638 |
+
"grad_norm": 0.10186126690814491,
|
639 |
+
"kl": 0.080108642578125,
|
640 |
+
"learning_rate": 4.555884099526793e-07,
|
641 |
+
"loss": 0.0001,
|
642 |
+
"reward": 1.1770833656191826,
|
643 |
+
"reward_std": 0.2261401410214603,
|
644 |
+
"rewards/equation_reward_func": 0.19010417093522847,
|
645 |
+
"rewards/format_reward_func": 0.986979179084301,
|
646 |
+
"step": 98
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"completion_length": 378.69271755218506,
|
650 |
+
"epoch": 0.05333333333333334,
|
651 |
+
"grad_norm": 0.08283978901098998,
|
652 |
+
"kl": 0.070831298828125,
|
653 |
+
"learning_rate": 4.5351725602562174e-07,
|
654 |
+
"loss": 0.0001,
|
655 |
+
"reward": 1.2083333805203438,
|
656 |
+
"reward_std": 0.2539973724633455,
|
657 |
+
"rewards/equation_reward_func": 0.22656251001171768,
|
658 |
+
"rewards/format_reward_func": 0.9817708469927311,
|
659 |
+
"step": 100
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"completion_length": 349.2812604904175,
|
663 |
+
"epoch": 0.0544,
|
664 |
+
"grad_norm": 0.10236681253344297,
|
665 |
+
"kl": 0.0821533203125,
|
666 |
+
"learning_rate": 4.514038371367791e-07,
|
667 |
+
"loss": 0.0001,
|
668 |
+
"reward": 1.3098958730697632,
|
669 |
+
"reward_std": 0.3604734097607434,
|
670 |
+
"rewards/equation_reward_func": 0.3437500107102096,
|
671 |
+
"rewards/format_reward_func": 0.9661458432674408,
|
672 |
+
"step": 102
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"completion_length": 357.3619899749756,
|
676 |
+
"epoch": 0.055466666666666664,
|
677 |
+
"grad_norm": 0.09738517323229856,
|
678 |
+
"kl": 0.086883544921875,
|
679 |
+
"learning_rate": 4.4924859218538936e-07,
|
680 |
+
"loss": 0.0001,
|
681 |
+
"reward": 1.3046875447034836,
|
682 |
+
"reward_std": 0.3255553734488785,
|
683 |
+
"rewards/equation_reward_func": 0.33072917233221233,
|
684 |
+
"rewards/format_reward_func": 0.9739583469927311,
|
685 |
+
"step": 104
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"completion_length": 365.2760524749756,
|
689 |
+
"epoch": 0.05653333333333333,
|
690 |
+
"grad_norm": 0.08975705250496918,
|
691 |
+
"kl": 0.09002685546875,
|
692 |
+
"learning_rate": 4.470519687568185e-07,
|
693 |
+
"loss": 0.0001,
|
694 |
+
"reward": 1.2968750484287739,
|
695 |
+
"reward_std": 0.33681244123727083,
|
696 |
+
"rewards/equation_reward_func": 0.3203125132713467,
|
697 |
+
"rewards/format_reward_func": 0.9765625074505806,
|
698 |
+
"step": 106
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"completion_length": 380.40365505218506,
|
702 |
+
"epoch": 0.0576,
|
703 |
+
"grad_norm": 0.08944591293143872,
|
704 |
+
"kl": 0.085113525390625,
|
705 |
+
"learning_rate": 4.4481442302960923e-07,
|
706 |
+
"loss": 0.0001,
|
707 |
+
"reward": 1.2135417126119137,
|
708 |
+
"reward_std": 0.2771795648150146,
|
709 |
+
"rewards/equation_reward_func": 0.23697917629033327,
|
710 |
+
"rewards/format_reward_func": 0.9765625149011612,
|
711 |
+
"step": 108
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"completion_length": 389.94271659851074,
|
715 |
+
"epoch": 0.058666666666666666,
|
716 |
+
"grad_norm": 0.09619766220094576,
|
717 |
+
"kl": 0.09130859375,
|
718 |
+
"learning_rate": 4.4253641968074505e-07,
|
719 |
+
"loss": 0.0001,
|
720 |
+
"reward": 1.2500000335276127,
|
721 |
+
"reward_std": 0.2892899289727211,
|
722 |
+
"rewards/equation_reward_func": 0.28645833977498114,
|
723 |
+
"rewards/format_reward_func": 0.963541679084301,
|
724 |
+
"step": 110
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"completion_length": 381.99219512939453,
|
728 |
+
"epoch": 0.05973333333333333,
|
729 |
+
"grad_norm": 0.10498087313979376,
|
730 |
+
"kl": 0.09423828125,
|
731 |
+
"learning_rate": 4.402184317891501e-07,
|
732 |
+
"loss": 0.0001,
|
733 |
+
"reward": 1.3229167088866234,
|
734 |
+
"reward_std": 0.32423597015440464,
|
735 |
+
"rewards/equation_reward_func": 0.35156250768341124,
|
736 |
+
"rewards/format_reward_func": 0.9713541865348816,
|
737 |
+
"step": 112
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"completion_length": 391.36719608306885,
|
741 |
+
"epoch": 0.0608,
|
742 |
+
"grad_norm": 0.09626210263887228,
|
743 |
+
"kl": 0.097381591796875,
|
744 |
+
"learning_rate": 4.37860940737443e-07,
|
745 |
+
"loss": 0.0001,
|
746 |
+
"reward": 1.2500000298023224,
|
747 |
+
"reward_std": 0.3341089729219675,
|
748 |
+
"rewards/equation_reward_func": 0.28385417186655104,
|
749 |
+
"rewards/format_reward_func": 0.9661458469927311,
|
750 |
+
"step": 114
|
751 |
+
},
|
752 |
+
{
|
753 |
+
"completion_length": 379.2812614440918,
|
754 |
+
"epoch": 0.06186666666666667,
|
755 |
+
"grad_norm": 0.0919023125255689,
|
756 |
+
"kl": 0.09576416015625,
|
757 |
+
"learning_rate": 4.354644361119671e-07,
|
758 |
+
"loss": 0.0001,
|
759 |
+
"reward": 1.2968750447034836,
|
760 |
+
"reward_std": 0.30213321885094047,
|
761 |
+
"rewards/equation_reward_func": 0.3255208437331021,
|
762 |
+
"rewards/format_reward_func": 0.9713541865348816,
|
763 |
+
"step": 116
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"completion_length": 377.5989694595337,
|
767 |
+
"epoch": 0.06293333333333333,
|
768 |
+
"grad_norm": 0.1258891080084215,
|
769 |
+
"kl": 0.1126708984375,
|
770 |
+
"learning_rate": 4.3302941560111716e-07,
|
771 |
+
"loss": 0.0001,
|
772 |
+
"reward": 1.3880208656191826,
|
773 |
+
"reward_std": 0.29082584474235773,
|
774 |
+
"rewards/equation_reward_func": 0.4192708428017795,
|
775 |
+
"rewards/format_reward_func": 0.9687500149011612,
|
776 |
+
"step": 118
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"completion_length": 406.2239742279053,
|
780 |
+
"epoch": 0.064,
|
781 |
+
"grad_norm": 0.07341804992437591,
|
782 |
+
"kl": 0.094940185546875,
|
783 |
+
"learning_rate": 4.3055638489198236e-07,
|
784 |
+
"loss": 0.0001,
|
785 |
+
"reward": 1.3072916977107525,
|
786 |
+
"reward_std": 0.3007106310687959,
|
787 |
+
"rewards/equation_reward_func": 0.3359375118743628,
|
788 |
+
"rewards/format_reward_func": 0.9713541865348816,
|
789 |
+
"step": 120
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"completion_length": 440.3489694595337,
|
793 |
+
"epoch": 0.06506666666666666,
|
794 |
+
"grad_norm": 0.07202980759381214,
|
795 |
+
"kl": 0.102081298828125,
|
796 |
+
"learning_rate": 4.280458575653296e-07,
|
797 |
+
"loss": 0.0001,
|
798 |
+
"reward": 1.2942708879709244,
|
799 |
+
"reward_std": 0.2781888456083834,
|
800 |
+
"rewards/equation_reward_func": 0.34635417629033327,
|
801 |
+
"rewards/format_reward_func": 0.9479166828095913,
|
802 |
+
"step": 122
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"completion_length": 373.723970413208,
|
806 |
+
"epoch": 0.06613333333333334,
|
807 |
+
"grad_norm": 0.12005799306967507,
|
808 |
+
"kl": 0.109588623046875,
|
809 |
+
"learning_rate": 4.2549835498894665e-07,
|
810 |
+
"loss": 0.0001,
|
811 |
+
"reward": 1.3619792126119137,
|
812 |
+
"reward_std": 0.30349841713905334,
|
813 |
+
"rewards/equation_reward_func": 0.39583334419876337,
|
814 |
+
"rewards/format_reward_func": 0.9661458544433117,
|
815 |
+
"step": 124
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"completion_length": 424.8880310058594,
|
819 |
+
"epoch": 0.0672,
|
820 |
+
"grad_norm": 0.08141812528362076,
|
821 |
+
"kl": 0.11883544921875,
|
822 |
+
"learning_rate": 4.229144062093679e-07,
|
823 |
+
"loss": 0.0001,
|
824 |
+
"reward": 1.3072916939854622,
|
825 |
+
"reward_std": 0.34696589363738894,
|
826 |
+
"rewards/equation_reward_func": 0.37760417303070426,
|
827 |
+
"rewards/format_reward_func": 0.9296875186264515,
|
828 |
+
"step": 126
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"completion_length": 425.73959732055664,
|
832 |
+
"epoch": 0.06826666666666667,
|
833 |
+
"grad_norm": 0.08953036809534468,
|
834 |
+
"kl": 0.10595703125,
|
835 |
+
"learning_rate": 4.2029454784200675e-07,
|
836 |
+
"loss": 0.0001,
|
837 |
+
"reward": 1.3203125335276127,
|
838 |
+
"reward_std": 0.2961498526856303,
|
839 |
+
"rewards/equation_reward_func": 0.3697916716337204,
|
840 |
+
"rewards/format_reward_func": 0.9505208544433117,
|
841 |
+
"step": 128
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"completion_length": 456.8411560058594,
|
845 |
+
"epoch": 0.06933333333333333,
|
846 |
+
"grad_norm": 0.10202840286205975,
|
847 |
+
"kl": 0.128875732421875,
|
848 |
+
"learning_rate": 4.1763932395971433e-07,
|
849 |
+
"loss": 0.0001,
|
850 |
+
"reward": 1.2786458767950535,
|
851 |
+
"reward_std": 0.3274143426679075,
|
852 |
+
"rewards/equation_reward_func": 0.3463541774544865,
|
853 |
+
"rewards/format_reward_func": 0.9322916902601719,
|
854 |
+
"step": 130
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"completion_length": 391.82552909851074,
|
858 |
+
"epoch": 0.0704,
|
859 |
+
"grad_norm": 0.09343731649452018,
|
860 |
+
"kl": 0.116180419921875,
|
861 |
+
"learning_rate": 4.1494928597979117e-07,
|
862 |
+
"loss": 0.0001,
|
863 |
+
"reward": 1.4427083693444729,
|
864 |
+
"reward_std": 0.2739125872030854,
|
865 |
+
"rewards/equation_reward_func": 0.48958334792405367,
|
866 |
+
"rewards/format_reward_func": 0.9531250149011612,
|
867 |
+
"step": 132
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"completion_length": 431.3073043823242,
|
871 |
+
"epoch": 0.07146666666666666,
|
872 |
+
"grad_norm": 0.09948838006778335,
|
873 |
+
"kl": 0.113861083984375,
|
874 |
+
"learning_rate": 4.122249925494726e-07,
|
875 |
+
"loss": 0.0001,
|
876 |
+
"reward": 1.3281250447034836,
|
877 |
+
"reward_std": 0.267287774477154,
|
878 |
+
"rewards/equation_reward_func": 0.37239584675990045,
|
879 |
+
"rewards/format_reward_func": 0.955729179084301,
|
880 |
+
"step": 134
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"completion_length": 422.07032203674316,
|
884 |
+
"epoch": 0.07253333333333334,
|
885 |
+
"grad_norm": 0.07206798558431624,
|
886 |
+
"kl": 0.13238525390625,
|
887 |
+
"learning_rate": 4.094670094299131e-07,
|
888 |
+
"loss": 0.0001,
|
889 |
+
"reward": 1.3750000409781933,
|
890 |
+
"reward_std": 0.2928238473832607,
|
891 |
+
"rewards/equation_reward_func": 0.42447917675599456,
|
892 |
+
"rewards/format_reward_func": 0.9505208544433117,
|
893 |
+
"step": 136
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"completion_length": 443.54688358306885,
|
897 |
+
"epoch": 0.0736,
|
898 |
+
"grad_norm": 0.10976069905088891,
|
899 |
+
"kl": 0.109039306640625,
|
900 |
+
"learning_rate": 4.066759093786931e-07,
|
901 |
+
"loss": 0.0001,
|
902 |
+
"reward": 1.2630208693444729,
|
903 |
+
"reward_std": 0.2776200850494206,
|
904 |
+
"rewards/equation_reward_func": 0.33593750884756446,
|
905 |
+
"rewards/format_reward_func": 0.927083358168602,
|
906 |
+
"step": 138
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"completion_length": 398.4505367279053,
|
910 |
+
"epoch": 0.07466666666666667,
|
911 |
+
"grad_norm": 0.084796835919473,
|
912 |
+
"kl": 0.12408447265625,
|
913 |
+
"learning_rate": 4.038522720308732e-07,
|
914 |
+
"loss": 0.0001,
|
915 |
+
"reward": 1.4375000484287739,
|
916 |
+
"reward_std": 0.2496197698637843,
|
917 |
+
"rewards/equation_reward_func": 0.4739583432674408,
|
918 |
+
"rewards/format_reward_func": 0.9635416902601719,
|
919 |
+
"step": 140
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"completion_length": 375.6875104904175,
|
923 |
+
"epoch": 0.07573333333333333,
|
924 |
+
"grad_norm": 0.06578890547258132,
|
925 |
+
"kl": 0.134796142578125,
|
926 |
+
"learning_rate": 4.009966837786194e-07,
|
927 |
+
"loss": 0.0001,
|
928 |
+
"reward": 1.4114583730697632,
|
929 |
+
"reward_std": 0.2610441828146577,
|
930 |
+
"rewards/equation_reward_func": 0.4453125111758709,
|
931 |
+
"rewards/format_reward_func": 0.9661458507180214,
|
932 |
+
"step": 142
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"completion_length": 368.48959255218506,
|
936 |
+
"epoch": 0.0768,
|
937 |
+
"grad_norm": 0.10902428052363637,
|
938 |
+
"kl": 0.136627197265625,
|
939 |
+
"learning_rate": 3.981097376494259e-07,
|
940 |
+
"loss": 0.0001,
|
941 |
+
"reward": 1.4687500521540642,
|
942 |
+
"reward_std": 0.25434603728353977,
|
943 |
+
"rewards/equation_reward_func": 0.49218752002343535,
|
944 |
+
"rewards/format_reward_func": 0.9765625223517418,
|
945 |
+
"step": 144
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"completion_length": 406.8750114440918,
|
949 |
+
"epoch": 0.07786666666666667,
|
950 |
+
"grad_norm": 0.1079461409291905,
|
951 |
+
"kl": 0.129119873046875,
|
952 |
+
"learning_rate": 3.951920331829592e-07,
|
953 |
+
"loss": 0.0001,
|
954 |
+
"reward": 1.3281250484287739,
|
955 |
+
"reward_std": 0.25655436515808105,
|
956 |
+
"rewards/equation_reward_func": 0.372395841171965,
|
957 |
+
"rewards/format_reward_func": 0.9557291902601719,
|
958 |
+
"step": 146
|
959 |
+
},
|
960 |
+
{
|
961 |
+
"completion_length": 401.2213668823242,
|
962 |
+
"epoch": 0.07893333333333333,
|
963 |
+
"grad_norm": 0.1067111189421742,
|
964 |
+
"kl": 0.132171630859375,
|
965 |
+
"learning_rate": 3.922441763065506e-07,
|
966 |
+
"loss": 0.0001,
|
967 |
+
"reward": 1.3906250447034836,
|
968 |
+
"reward_std": 0.249761619605124,
|
969 |
+
"rewards/equation_reward_func": 0.4270833439659327,
|
970 |
+
"rewards/format_reward_func": 0.9635416902601719,
|
971 |
+
"step": 148
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"completion_length": 450.89844512939453,
|
975 |
+
"epoch": 0.08,
|
976 |
+
"grad_norm": 0.07018564082166065,
|
977 |
+
"kl": 0.112640380859375,
|
978 |
+
"learning_rate": 3.8926677920936093e-07,
|
979 |
+
"loss": 0.0001,
|
980 |
+
"reward": 1.1901042126119137,
|
981 |
+
"reward_std": 0.21367743890732527,
|
982 |
+
"rewards/equation_reward_func": 0.23177083814516664,
|
983 |
+
"rewards/format_reward_func": 0.9583333507180214,
|
984 |
+
"step": 150
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"completion_length": 319.31250762939453,
|
988 |
+
"epoch": 0.08106666666666666,
|
989 |
+
"grad_norm": 0.09931506831300466,
|
990 |
+
"kl": 0.16046142578125,
|
991 |
+
"learning_rate": 3.862604602152464e-07,
|
992 |
+
"loss": 0.0002,
|
993 |
+
"reward": 1.5156250521540642,
|
994 |
+
"reward_std": 0.17254623072221875,
|
995 |
+
"rewards/equation_reward_func": 0.5416666828095913,
|
996 |
+
"rewards/format_reward_func": 0.9739583432674408,
|
997 |
+
"step": 152
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"completion_length": 372.6979274749756,
|
1001 |
+
"epoch": 0.08213333333333334,
|
1002 |
+
"grad_norm": 0.08423289509476255,
|
1003 |
+
"kl": 0.1458740234375,
|
1004 |
+
"learning_rate": 3.8322584365434934e-07,
|
1005 |
+
"loss": 0.0001,
|
1006 |
+
"reward": 1.4036458805203438,
|
1007 |
+
"reward_std": 0.23620562674477696,
|
1008 |
+
"rewards/equation_reward_func": 0.43229168234393,
|
1009 |
+
"rewards/format_reward_func": 0.971354179084301,
|
1010 |
+
"step": 154
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"completion_length": 383.4323024749756,
|
1014 |
+
"epoch": 0.0832,
|
1015 |
+
"grad_norm": 0.11684907563681693,
|
1016 |
+
"kl": 0.13134765625,
|
1017 |
+
"learning_rate": 3.8016355973344173e-07,
|
1018 |
+
"loss": 0.0001,
|
1019 |
+
"reward": 1.3619792014360428,
|
1020 |
+
"reward_std": 0.2366077760234475,
|
1021 |
+
"rewards/equation_reward_func": 0.39062501303851604,
|
1022 |
+
"rewards/format_reward_func": 0.9713541828095913,
|
1023 |
+
"step": 156
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"completion_length": 421.96876335144043,
|
1027 |
+
"epoch": 0.08426666666666667,
|
1028 |
+
"grad_norm": 0.1641382478416818,
|
1029 |
+
"kl": 0.124755859375,
|
1030 |
+
"learning_rate": 3.7707424440504863e-07,
|
1031 |
+
"loss": 0.0001,
|
1032 |
+
"reward": 1.296875037252903,
|
1033 |
+
"reward_std": 0.23676540749147534,
|
1034 |
+
"rewards/equation_reward_func": 0.3333333421032876,
|
1035 |
+
"rewards/format_reward_func": 0.963541679084301,
|
1036 |
+
"step": 158
|
1037 |
+
},
|
1038 |
+
{
|
1039 |
+
"completion_length": 365.9166793823242,
|
1040 |
+
"epoch": 0.08533333333333333,
|
1041 |
+
"grad_norm": 0.07817184043452526,
|
1042 |
+
"kl": 0.1395263671875,
|
1043 |
+
"learning_rate": 3.739585392353787e-07,
|
1044 |
+
"loss": 0.0001,
|
1045 |
+
"reward": 1.3880208767950535,
|
1046 |
+
"reward_std": 0.19910774566233158,
|
1047 |
+
"rewards/equation_reward_func": 0.4140625100117177,
|
1048 |
+
"rewards/format_reward_func": 0.9739583469927311,
|
1049 |
+
"step": 160
|
1050 |
+
},
|
1051 |
+
{
|
1052 |
+
"completion_length": 336.37500953674316,
|
1053 |
+
"epoch": 0.0864,
|
1054 |
+
"grad_norm": 0.08666435211660832,
|
1055 |
+
"kl": 0.155364990234375,
|
1056 |
+
"learning_rate": 3.7081709127108767e-07,
|
1057 |
+
"loss": 0.0002,
|
1058 |
+
"reward": 1.5182291939854622,
|
1059 |
+
"reward_std": 0.20631011482328176,
|
1060 |
+
"rewards/equation_reward_func": 0.5312500149011612,
|
1061 |
+
"rewards/format_reward_func": 0.986979179084301,
|
1062 |
+
"step": 162
|
1063 |
+
},
|
1064 |
+
{
|
1065 |
+
"completion_length": 360.15625953674316,
|
1066 |
+
"epoch": 0.08746666666666666,
|
1067 |
+
"grad_norm": 0.07995177005809427,
|
1068 |
+
"kl": 0.134307861328125,
|
1069 |
+
"learning_rate": 3.6765055290490513e-07,
|
1070 |
+
"loss": 0.0001,
|
1071 |
+
"reward": 1.367187537252903,
|
1072 |
+
"reward_std": 0.23405077820643783,
|
1073 |
+
"rewards/equation_reward_func": 0.3776041774544865,
|
1074 |
+
"rewards/format_reward_func": 0.9895833432674408,
|
1075 |
+
"step": 164
|
1076 |
+
},
|
1077 |
+
{
|
1078 |
+
"completion_length": 316.8932418823242,
|
1079 |
+
"epoch": 0.08853333333333334,
|
1080 |
+
"grad_norm": 0.15304933704233734,
|
1081 |
+
"kl": 0.155242919921875,
|
1082 |
+
"learning_rate": 3.644595817401501e-07,
|
1083 |
+
"loss": 0.0002,
|
1084 |
+
"reward": 1.533854216337204,
|
1085 |
+
"reward_std": 0.25381680950522423,
|
1086 |
+
"rewards/equation_reward_func": 0.5442708469927311,
|
1087 |
+
"rewards/format_reward_func": 0.9895833432674408,
|
1088 |
+
"step": 166
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"completion_length": 388.1224002838135,
|
1092 |
+
"epoch": 0.0896,
|
1093 |
+
"grad_norm": 0.08385643880585995,
|
1094 |
+
"kl": 0.141143798828125,
|
1095 |
+
"learning_rate": 3.6124484045416483e-07,
|
1096 |
+
"loss": 0.0001,
|
1097 |
+
"reward": 1.3723958767950535,
|
1098 |
+
"reward_std": 0.24668778479099274,
|
1099 |
+
"rewards/equation_reward_func": 0.40885417466051877,
|
1100 |
+
"rewards/format_reward_func": 0.9635416828095913,
|
1101 |
+
"step": 168
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"completion_length": 351.93750858306885,
|
1105 |
+
"epoch": 0.09066666666666667,
|
1106 |
+
"grad_norm": 0.07697038389931672,
|
1107 |
+
"kl": 0.14190673828125,
|
1108 |
+
"learning_rate": 3.580069966606949e-07,
|
1109 |
+
"loss": 0.0001,
|
1110 |
+
"reward": 1.4479166939854622,
|
1111 |
+
"reward_std": 0.2045988291501999,
|
1112 |
+
"rewards/equation_reward_func": 0.4557291753590107,
|
1113 |
+
"rewards/format_reward_func": 0.9921875037252903,
|
1114 |
+
"step": 170
|
1115 |
+
},
|
1116 |
+
{
|
1117 |
+
"completion_length": 334.4765729904175,
|
1118 |
+
"epoch": 0.09173333333333333,
|
1119 |
+
"grad_norm": 0.0735056203449723,
|
1120 |
+
"kl": 0.144317626953125,
|
1121 |
+
"learning_rate": 3.547467227712444e-07,
|
1122 |
+
"loss": 0.0001,
|
1123 |
+
"reward": 1.4973958656191826,
|
1124 |
+
"reward_std": 0.19876712281256914,
|
1125 |
+
"rewards/equation_reward_func": 0.5130208474583924,
|
1126 |
+
"rewards/format_reward_func": 0.9843750074505806,
|
1127 |
+
"step": 172
|
1128 |
+
},
|
1129 |
+
{
|
1130 |
+
"completion_length": 327.29948711395264,
|
1131 |
+
"epoch": 0.0928,
|
1132 |
+
"grad_norm": 0.12548498564602414,
|
1133 |
+
"kl": 0.1490478515625,
|
1134 |
+
"learning_rate": 3.5146469585543386e-07,
|
1135 |
+
"loss": 0.0001,
|
1136 |
+
"reward": 1.4947917088866234,
|
1137 |
+
"reward_std": 0.22728270338848233,
|
1138 |
+
"rewards/equation_reward_func": 0.5078125204890966,
|
1139 |
+
"rewards/format_reward_func": 0.9869791753590107,
|
1140 |
+
"step": 174
|
1141 |
+
},
|
1142 |
+
{
|
1143 |
+
"completion_length": 398.49220085144043,
|
1144 |
+
"epoch": 0.09386666666666667,
|
1145 |
+
"grad_norm": 0.08293639399157755,
|
1146 |
+
"kl": 0.149139404296875,
|
1147 |
+
"learning_rate": 3.481615975003922e-07,
|
1148 |
+
"loss": 0.0001,
|
1149 |
+
"reward": 1.3489583730697632,
|
1150 |
+
"reward_std": 0.20350094605237246,
|
1151 |
+
"rewards/equation_reward_func": 0.3645833428017795,
|
1152 |
+
"rewards/format_reward_func": 0.9843750111758709,
|
1153 |
+
"step": 176
|
1154 |
+
},
|
1155 |
+
{
|
1156 |
+
"completion_length": 324.3489713668823,
|
1157 |
+
"epoch": 0.09493333333333333,
|
1158 |
+
"grad_norm": 0.09550896801162942,
|
1159 |
+
"kl": 0.155364990234375,
|
1160 |
+
"learning_rate": 3.448381136692089e-07,
|
1161 |
+
"loss": 0.0002,
|
1162 |
+
"reward": 1.4583333730697632,
|
1163 |
+
"reward_std": 0.1914014257490635,
|
1164 |
+
"rewards/equation_reward_func": 0.4661458458285779,
|
1165 |
+
"rewards/format_reward_func": 0.9921875037252903,
|
1166 |
+
"step": 178
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"completion_length": 363.1067838668823,
|
1170 |
+
"epoch": 0.096,
|
1171 |
+
"grad_norm": 0.06570582721768603,
|
1172 |
+
"kl": 0.131988525390625,
|
1173 |
+
"learning_rate": 3.4149493455847897e-07,
|
1174 |
+
"loss": 0.0001,
|
1175 |
+
"reward": 1.4010417014360428,
|
1176 |
+
"reward_std": 0.15116061177104712,
|
1177 |
+
"rewards/equation_reward_func": 0.41927084419876337,
|
1178 |
+
"rewards/format_reward_func": 0.9817708432674408,
|
1179 |
+
"step": 180
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"completion_length": 350.994797706604,
|
1183 |
+
"epoch": 0.09706666666666666,
|
1184 |
+
"grad_norm": 0.08114840800090561,
|
1185 |
+
"kl": 0.165863037109375,
|
1186 |
+
"learning_rate": 3.3813275445496766e-07,
|
1187 |
+
"loss": 0.0002,
|
1188 |
+
"reward": 1.4375000447034836,
|
1189 |
+
"reward_std": 0.2402082341723144,
|
1190 |
+
"rewards/equation_reward_func": 0.45572917768731713,
|
1191 |
+
"rewards/format_reward_func": 0.9817708469927311,
|
1192 |
+
"step": 182
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"completion_length": 341.2786521911621,
|
1196 |
+
"epoch": 0.09813333333333334,
|
1197 |
+
"grad_norm": 0.09604192137372529,
|
1198 |
+
"kl": 0.140167236328125,
|
1199 |
+
"learning_rate": 3.347522715914262e-07,
|
1200 |
+
"loss": 0.0001,
|
1201 |
+
"reward": 1.4739583805203438,
|
1202 |
+
"reward_std": 0.2517684092745185,
|
1203 |
+
"rewards/equation_reward_func": 0.48958334303461015,
|
1204 |
+
"rewards/format_reward_func": 0.9843750111758709,
|
1205 |
+
"step": 184
|
1206 |
+
},
|
1207 |
+
{
|
1208 |
+
"completion_length": 334.8333444595337,
|
1209 |
+
"epoch": 0.0992,
|
1210 |
+
"grad_norm": 0.06092803443628096,
|
1211 |
+
"kl": 0.15545654296875,
|
1212 |
+
"learning_rate": 3.313541880015877e-07,
|
1213 |
+
"loss": 0.0002,
|
1214 |
+
"reward": 1.4869792014360428,
|
1215 |
+
"reward_std": 0.17553172213956714,
|
1216 |
+
"rewards/equation_reward_func": 0.49218751210719347,
|
1217 |
+
"rewards/format_reward_func": 0.9947916716337204,
|
1218 |
+
"step": 186
|
1219 |
+
},
|
1220 |
+
{
|
1221 |
+
"completion_length": 296.9895906448364,
|
1222 |
+
"epoch": 0.10026666666666667,
|
1223 |
+
"grad_norm": 0.08698608388272158,
|
1224 |
+
"kl": 0.15386962890625,
|
1225 |
+
"learning_rate": 3.279392093743747e-07,
|
1226 |
+
"loss": 0.0002,
|
1227 |
+
"reward": 1.484375037252903,
|
1228 |
+
"reward_std": 0.18876954959705472,
|
1229 |
+
"rewards/equation_reward_func": 0.5130208488553762,
|
1230 |
+
"rewards/format_reward_func": 0.971354179084301,
|
1231 |
+
"step": 188
|
1232 |
+
},
|
1233 |
+
{
|
1234 |
+
"completion_length": 369.6171989440918,
|
1235 |
+
"epoch": 0.10133333333333333,
|
1236 |
+
"grad_norm": 0.07100886524919588,
|
1237 |
+
"kl": 0.1356201171875,
|
1238 |
+
"learning_rate": 3.245080449073459e-07,
|
1239 |
+
"loss": 0.0001,
|
1240 |
+
"reward": 1.3932291939854622,
|
1241 |
+
"reward_std": 0.22231243178248405,
|
1242 |
+
"rewards/equation_reward_func": 0.40885417722165585,
|
1243 |
+
"rewards/format_reward_func": 0.9843750149011612,
|
1244 |
+
"step": 190
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"completion_length": 340.66928005218506,
|
1248 |
+
"epoch": 0.1024,
|
1249 |
+
"grad_norm": 0.06938271896378453,
|
1250 |
+
"kl": 0.164703369140625,
|
1251 |
+
"learning_rate": 3.210614071594162e-07,
|
1252 |
+
"loss": 0.0002,
|
1253 |
+
"reward": 1.4322917088866234,
|
1254 |
+
"reward_std": 0.21930959541350603,
|
1255 |
+
"rewards/equation_reward_func": 0.44791667885147035,
|
1256 |
+
"rewards/format_reward_func": 0.9843750111758709,
|
1257 |
+
"step": 192
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"completion_length": 366.10157108306885,
|
1261 |
+
"epoch": 0.10346666666666667,
|
1262 |
+
"grad_norm": 0.0640261989037358,
|
1263 |
+
"kl": 0.1395263671875,
|
1264 |
+
"learning_rate": 3.1760001190287695e-07,
|
1265 |
+
"loss": 0.0001,
|
1266 |
+
"reward": 1.3567708730697632,
|
1267 |
+
"reward_std": 0.14457962242886424,
|
1268 |
+
"rewards/equation_reward_func": 0.3671875111758709,
|
1269 |
+
"rewards/format_reward_func": 0.9895833395421505,
|
1270 |
+
"step": 194
|
1271 |
+
},
|
1272 |
+
{
|
1273 |
+
"completion_length": 335.52344608306885,
|
1274 |
+
"epoch": 0.10453333333333334,
|
1275 |
+
"grad_norm": 0.07693618401025876,
|
1276 |
+
"kl": 0.152862548828125,
|
1277 |
+
"learning_rate": 3.141245779747502e-07,
|
1278 |
+
"loss": 0.0002,
|
1279 |
+
"reward": 1.3723958805203438,
|
1280 |
+
"reward_std": 0.19283229811117053,
|
1281 |
+
"rewards/equation_reward_func": 0.3828125139698386,
|
1282 |
+
"rewards/format_reward_func": 0.9895833395421505,
|
1283 |
+
"step": 196
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"completion_length": 317.8932409286499,
|
1287 |
+
"epoch": 0.1056,
|
1288 |
+
"grad_norm": 0.08196224183163763,
|
1289 |
+
"kl": 0.158447265625,
|
1290 |
+
"learning_rate": 3.106358271275056e-07,
|
1291 |
+
"loss": 0.0002,
|
1292 |
+
"reward": 1.4947917126119137,
|
1293 |
+
"reward_std": 0.19350500591099262,
|
1294 |
+
"rewards/equation_reward_func": 0.5104166797827929,
|
1295 |
+
"rewards/format_reward_func": 0.9843750074505806,
|
1296 |
+
"step": 198
|
1297 |
+
},
|
1298 |
+
{
|
1299 |
+
"completion_length": 317.8619861602783,
|
1300 |
+
"epoch": 0.10666666666666667,
|
1301 |
+
"grad_norm": 0.09403807304980984,
|
1302 |
+
"kl": 0.15289306640625,
|
1303 |
+
"learning_rate": 3.0713448387917227e-07,
|
1304 |
+
"loss": 0.0002,
|
1305 |
+
"reward": 1.4609375223517418,
|
1306 |
+
"reward_std": 0.18717782059684396,
|
1307 |
+
"rewards/equation_reward_func": 0.46354167303070426,
|
1308 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
1309 |
+
"step": 200
|
1310 |
+
},
|
1311 |
+
{
|
1312 |
+
"completion_length": 349.03907012939453,
|
1313 |
+
"epoch": 0.10773333333333333,
|
1314 |
+
"grad_norm": 0.0618629735347176,
|
1315 |
+
"kl": 0.14788818359375,
|
1316 |
+
"learning_rate": 3.0362127536287636e-07,
|
1317 |
+
"loss": 0.0001,
|
1318 |
+
"reward": 1.3906250447034836,
|
1319 |
+
"reward_std": 0.20409536687657237,
|
1320 |
+
"rewards/equation_reward_func": 0.4088541797827929,
|
1321 |
+
"rewards/format_reward_func": 0.9817708469927311,
|
1322 |
+
"step": 202
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"completion_length": 280.3645906448364,
|
1326 |
+
"epoch": 0.1088,
|
1327 |
+
"grad_norm": 0.06963964620642316,
|
1328 |
+
"kl": 0.168182373046875,
|
1329 |
+
"learning_rate": 3.0009693117583523e-07,
|
1330 |
+
"loss": 0.0002,
|
1331 |
+
"reward": 1.5182292088866234,
|
1332 |
+
"reward_std": 0.12625272339209914,
|
1333 |
+
"rewards/equation_reward_func": 0.5234375149011612,
|
1334 |
+
"rewards/format_reward_func": 0.9947916716337204,
|
1335 |
+
"step": 204
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"completion_length": 307.3724031448364,
|
1339 |
+
"epoch": 0.10986666666666667,
|
1340 |
+
"grad_norm": 0.07039292185299532,
|
1341 |
+
"kl": 0.175628662109375,
|
1342 |
+
"learning_rate": 2.965621832278401e-07,
|
1343 |
+
"loss": 0.0002,
|
1344 |
+
"reward": 1.486979205161333,
|
1345 |
+
"reward_std": 0.15833014715462923,
|
1346 |
+
"rewards/equation_reward_func": 0.49739584419876337,
|
1347 |
+
"rewards/format_reward_func": 0.9895833395421505,
|
1348 |
+
"step": 206
|
1349 |
+
},
|
1350 |
+
{
|
1351 |
+
"completion_length": 341.1041774749756,
|
1352 |
+
"epoch": 0.11093333333333333,
|
1353 |
+
"grad_norm": 0.06143705194536295,
|
1354 |
+
"kl": 0.154327392578125,
|
1355 |
+
"learning_rate": 2.9301776558925875e-07,
|
1356 |
+
"loss": 0.0002,
|
1357 |
+
"reward": 1.4218750447034836,
|
1358 |
+
"reward_std": 0.15025723353028297,
|
1359 |
+
"rewards/equation_reward_func": 0.4375000144354999,
|
1360 |
+
"rewards/format_reward_func": 0.9843750074505806,
|
1361 |
+
"step": 208
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"completion_length": 334.9270935058594,
|
1365 |
+
"epoch": 0.112,
|
1366 |
+
"grad_norm": 0.0858887137019435,
|
1367 |
+
"kl": 0.15777587890625,
|
1368 |
+
"learning_rate": 2.894644143385885e-07,
|
1369 |
+
"loss": 0.0002,
|
1370 |
+
"reward": 1.4739583730697632,
|
1371 |
+
"reward_std": 0.24965603277087212,
|
1372 |
+
"rewards/equation_reward_func": 0.4895833469927311,
|
1373 |
+
"rewards/format_reward_func": 0.9843750149011612,
|
1374 |
+
"step": 210
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"completion_length": 322.8906316757202,
|
1378 |
+
"epoch": 0.11306666666666666,
|
1379 |
+
"grad_norm": 0.0904494730503501,
|
1380 |
+
"kl": 0.16424560546875,
|
1381 |
+
"learning_rate": 2.859028674095937e-07,
|
1382 |
+
"loss": 0.0002,
|
1383 |
+
"reward": 1.4479167088866234,
|
1384 |
+
"reward_std": 0.17492430424317718,
|
1385 |
+
"rewards/equation_reward_func": 0.4635416748933494,
|
1386 |
+
"rewards/format_reward_func": 0.9843750149011612,
|
1387 |
+
"step": 212
|
1388 |
+
},
|
1389 |
+
{
|
1390 |
+
"completion_length": 296.30469512939453,
|
1391 |
+
"epoch": 0.11413333333333334,
|
1392 |
+
"grad_norm": 0.08632111011343167,
|
1393 |
+
"kl": 0.1639404296875,
|
1394 |
+
"learning_rate": 2.823338644380566e-07,
|
1395 |
+
"loss": 0.0002,
|
1396 |
+
"reward": 1.5156250521540642,
|
1397 |
+
"reward_std": 0.14193214289844036,
|
1398 |
+
"rewards/equation_reward_func": 0.5338541865348816,
|
1399 |
+
"rewards/format_reward_func": 0.9817708469927311,
|
1400 |
+
"step": 214
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"completion_length": 306.0208387374878,
|
1404 |
+
"epoch": 0.1152,
|
1405 |
+
"grad_norm": 0.08745683085319692,
|
1406 |
+
"kl": 0.159393310546875,
|
1407 |
+
"learning_rate": 2.7875814660817504e-07,
|
1408 |
+
"loss": 0.0002,
|
1409 |
+
"reward": 1.5364583805203438,
|
1410 |
+
"reward_std": 0.22032672306522727,
|
1411 |
+
"rewards/equation_reward_func": 0.557291679084301,
|
1412 |
+
"rewards/format_reward_func": 0.9791666828095913,
|
1413 |
+
"step": 216
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"completion_length": 351.677095413208,
|
1417 |
+
"epoch": 0.11626666666666667,
|
1418 |
+
"grad_norm": 0.0850761586470191,
|
1419 |
+
"kl": 0.1666259765625,
|
1420 |
+
"learning_rate": 2.751764564986396e-07,
|
1421 |
+
"loss": 0.0002,
|
1422 |
+
"reward": 1.3958333656191826,
|
1423 |
+
"reward_std": 0.28290195716544986,
|
1424 |
+
"rewards/equation_reward_func": 0.4062500118743628,
|
1425 |
+
"rewards/format_reward_func": 0.9895833395421505,
|
1426 |
+
"step": 218
|
1427 |
+
},
|
1428 |
+
{
|
1429 |
+
"completion_length": 308.17448806762695,
|
1430 |
+
"epoch": 0.11733333333333333,
|
1431 |
+
"grad_norm": 0.07684504845856611,
|
1432 |
+
"kl": 0.173187255859375,
|
1433 |
+
"learning_rate": 2.715895379284194e-07,
|
1434 |
+
"loss": 0.0002,
|
1435 |
+
"reward": 1.5104166977107525,
|
1436 |
+
"reward_std": 0.18647652165964246,
|
1437 |
+
"rewards/equation_reward_func": 0.5390625081490725,
|
1438 |
+
"rewards/format_reward_func": 0.971354179084301,
|
1439 |
+
"step": 220
|
1440 |
+
},
|
1441 |
+
{
|
1442 |
+
"completion_length": 328.5859479904175,
|
1443 |
+
"epoch": 0.1184,
|
1444 |
+
"grad_norm": 0.11203271187490091,
|
1445 |
+
"kl": 0.16510009765625,
|
1446 |
+
"learning_rate": 2.6799813580229174e-07,
|
1447 |
+
"loss": 0.0002,
|
1448 |
+
"reward": 1.4557292014360428,
|
1449 |
+
"reward_std": 0.2715247953310609,
|
1450 |
+
"rewards/equation_reward_func": 0.4895833469927311,
|
1451 |
+
"rewards/format_reward_func": 0.9661458507180214,
|
1452 |
+
"step": 222
|
1453 |
+
},
|
1454 |
+
{
|
1455 |
+
"completion_length": 388.0573043823242,
|
1456 |
+
"epoch": 0.11946666666666667,
|
1457 |
+
"grad_norm": 0.06225243124003096,
|
1458 |
+
"kl": 0.14501953125,
|
1459 |
+
"learning_rate": 2.6440299595614606e-07,
|
1460 |
+
"loss": 0.0001,
|
1461 |
+
"reward": 1.3333333730697632,
|
1462 |
+
"reward_std": 0.22618821496143937,
|
1463 |
+
"rewards/equation_reward_func": 0.35937500931322575,
|
1464 |
+
"rewards/format_reward_func": 0.9739583469927311,
|
1465 |
+
"step": 224
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"completion_length": 303.80209159851074,
|
1469 |
+
"epoch": 0.12053333333333334,
|
1470 |
+
"grad_norm": 0.08582274740530478,
|
1471 |
+
"kl": 0.18316650390625,
|
1472 |
+
"learning_rate": 2.6080486500209347e-07,
|
1473 |
+
"loss": 0.0002,
|
1474 |
+
"reward": 1.5052083618938923,
|
1475 |
+
"reward_std": 0.1736113135702908,
|
1476 |
+
"rewards/equation_reward_func": 0.5234375176951289,
|
1477 |
+
"rewards/format_reward_func": 0.9817708395421505,
|
1478 |
+
"step": 226
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"completion_length": 366.50261306762695,
|
1482 |
+
"epoch": 0.1216,
|
1483 |
+
"grad_norm": 0.08747456062041993,
|
1484 |
+
"kl": 0.17315673828125,
|
1485 |
+
"learning_rate": 2.572044901734166e-07,
|
1486 |
+
"loss": 0.0002,
|
1487 |
+
"reward": 1.3489583805203438,
|
1488 |
+
"reward_std": 0.2056382312439382,
|
1489 |
+
"rewards/equation_reward_func": 0.3880208423361182,
|
1490 |
+
"rewards/format_reward_func": 0.9609375260770321,
|
1491 |
+
"step": 228
|
1492 |
+
},
|
1493 |
+
{
|
1494 |
+
"completion_length": 335.09636306762695,
|
1495 |
+
"epoch": 0.12266666666666666,
|
1496 |
+
"grad_norm": 0.34141856790128705,
|
1497 |
+
"kl": 0.56512451171875,
|
1498 |
+
"learning_rate": 2.536026191693893e-07,
|
1499 |
+
"loss": 0.0006,
|
1500 |
+
"reward": 1.3645833805203438,
|
1501 |
+
"reward_std": 0.15194532042369246,
|
1502 |
+
"rewards/equation_reward_func": 0.3906250118743628,
|
1503 |
+
"rewards/format_reward_func": 0.9739583469927311,
|
1504 |
+
"step": 230
|
1505 |
+
},
|
1506 |
+
{
|
1507 |
+
"completion_length": 338.17969703674316,
|
1508 |
+
"epoch": 0.12373333333333333,
|
1509 |
+
"grad_norm": 0.06484061977942189,
|
1510 |
+
"kl": 0.17218017578125,
|
1511 |
+
"learning_rate": 2.5e-07,
|
1512 |
+
"loss": 0.0002,
|
1513 |
+
"reward": 1.4270833693444729,
|
1514 |
+
"reward_std": 0.15773996990174055,
|
1515 |
+
"rewards/equation_reward_func": 0.4479166741948575,
|
1516 |
+
"rewards/format_reward_func": 0.9791666828095913,
|
1517 |
+
"step": 232
|
1518 |
+
},
|
1519 |
+
{
|
1520 |
+
"completion_length": 369.4713649749756,
|
1521 |
+
"epoch": 0.1248,
|
1522 |
+
"grad_norm": 0.06533716217495784,
|
1523 |
+
"kl": 0.172607421875,
|
1524 |
+
"learning_rate": 2.4639738083061073e-07,
|
1525 |
+
"loss": 0.0002,
|
1526 |
+
"reward": 1.3229167014360428,
|
1527 |
+
"reward_std": 0.1891809026710689,
|
1528 |
+
"rewards/equation_reward_func": 0.3619791816454381,
|
1529 |
+
"rewards/format_reward_func": 0.9609375186264515,
|
1530 |
+
"step": 234
|
1531 |
+
},
|
1532 |
+
{
|
1533 |
+
"completion_length": 326.32552909851074,
|
1534 |
+
"epoch": 0.12586666666666665,
|
1535 |
+
"grad_norm": 0.11951442156862668,
|
1536 |
+
"kl": 0.16986083984375,
|
1537 |
+
"learning_rate": 2.4279550982658345e-07,
|
1538 |
+
"loss": 0.0002,
|
1539 |
+
"reward": 1.4348958805203438,
|
1540 |
+
"reward_std": 0.20815222803503275,
|
1541 |
+
"rewards/equation_reward_func": 0.45833334419876337,
|
1542 |
+
"rewards/format_reward_func": 0.9765625149011612,
|
1543 |
+
"step": 236
|
1544 |
+
},
|
1545 |
+
{
|
1546 |
+
"completion_length": 288.45052909851074,
|
1547 |
+
"epoch": 0.12693333333333334,
|
1548 |
+
"grad_norm": 0.08691549270327721,
|
1549 |
+
"kl": 0.19256591796875,
|
1550 |
+
"learning_rate": 2.3919513499790646e-07,
|
1551 |
+
"loss": 0.0002,
|
1552 |
+
"reward": 1.5260417088866234,
|
1553 |
+
"reward_std": 0.1767690358683467,
|
1554 |
+
"rewards/equation_reward_func": 0.5520833525806665,
|
1555 |
+
"rewards/format_reward_func": 0.9739583469927311,
|
1556 |
+
"step": 238
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"completion_length": 286.3697991371155,
|
1560 |
+
"epoch": 0.128,
|
1561 |
+
"grad_norm": 0.07559248926700043,
|
1562 |
+
"kl": 0.19488525390625,
|
1563 |
+
"learning_rate": 2.3559700404385394e-07,
|
1564 |
+
"loss": 0.0002,
|
1565 |
+
"reward": 1.528645858168602,
|
1566 |
+
"reward_std": 0.22208327893167734,
|
1567 |
+
"rewards/equation_reward_func": 0.5520833469927311,
|
1568 |
+
"rewards/format_reward_func": 0.9765625037252903,
|
1569 |
+
"step": 240
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"completion_length": 340.2682399749756,
|
1573 |
+
"epoch": 0.12906666666666666,
|
1574 |
+
"grad_norm": 0.10530634140083081,
|
1575 |
+
"kl": 0.189453125,
|
1576 |
+
"learning_rate": 2.3200186419770823e-07,
|
1577 |
+
"loss": 0.0002,
|
1578 |
+
"reward": 1.3984375149011612,
|
1579 |
+
"reward_std": 0.23324821423739195,
|
1580 |
+
"rewards/equation_reward_func": 0.4348958395421505,
|
1581 |
+
"rewards/format_reward_func": 0.963541679084301,
|
1582 |
+
"step": 242
|
1583 |
+
},
|
1584 |
+
{
|
1585 |
+
"completion_length": 362.66927909851074,
|
1586 |
+
"epoch": 0.13013333333333332,
|
1587 |
+
"grad_norm": 1.3010084453655495,
|
1588 |
+
"kl": 0.183837890625,
|
1589 |
+
"learning_rate": 2.284104620715807e-07,
|
1590 |
+
"loss": 0.0002,
|
1591 |
+
"reward": 1.2968750298023224,
|
1592 |
+
"reward_std": 0.2373127401806414,
|
1593 |
+
"rewards/equation_reward_func": 0.3515625090803951,
|
1594 |
+
"rewards/format_reward_func": 0.9453125186264515,
|
1595 |
+
"step": 244
|
1596 |
+
},
|
1597 |
+
{
|
1598 |
+
"completion_length": 340.72917652130127,
|
1599 |
+
"epoch": 0.1312,
|
1600 |
+
"grad_norm": 0.06959692685962483,
|
1601 |
+
"kl": 0.18695068359375,
|
1602 |
+
"learning_rate": 2.2482354350136043e-07,
|
1603 |
+
"loss": 0.0002,
|
1604 |
+
"reward": 1.354166716337204,
|
1605 |
+
"reward_std": 0.19205195363610983,
|
1606 |
+
"rewards/equation_reward_func": 0.3802083437331021,
|
1607 |
+
"rewards/format_reward_func": 0.9739583544433117,
|
1608 |
+
"step": 246
|
1609 |
+
},
|
1610 |
+
{
|
1611 |
+
"completion_length": 340.98438453674316,
|
1612 |
+
"epoch": 0.13226666666666667,
|
1613 |
+
"grad_norm": 0.0765593787053769,
|
1614 |
+
"kl": 0.202880859375,
|
1615 |
+
"learning_rate": 2.2124185339182496e-07,
|
1616 |
+
"loss": 0.0002,
|
1617 |
+
"reward": 1.3203125447034836,
|
1618 |
+
"reward_std": 0.20337719656527042,
|
1619 |
+
"rewards/equation_reward_func": 0.36979167396202683,
|
1620 |
+
"rewards/format_reward_func": 0.950520858168602,
|
1621 |
+
"step": 248
|
1622 |
+
},
|
1623 |
+
{
|
1624 |
+
"completion_length": 324.2135548591614,
|
1625 |
+
"epoch": 0.13333333333333333,
|
1626 |
+
"grad_norm": 0.06964123521038948,
|
1627 |
+
"kl": 0.191162109375,
|
1628 |
+
"learning_rate": 2.1766613556194344e-07,
|
1629 |
+
"loss": 0.0002,
|
1630 |
+
"reward": 1.4114583618938923,
|
1631 |
+
"reward_std": 0.1772644561715424,
|
1632 |
+
"rewards/equation_reward_func": 0.44010417722165585,
|
1633 |
+
"rewards/format_reward_func": 0.971354179084301,
|
1634 |
+
"step": 250
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"completion_length": 345.8020935058594,
|
1638 |
+
"epoch": 0.1344,
|
1639 |
+
"grad_norm": 0.07570707850632788,
|
1640 |
+
"kl": 0.1973876953125,
|
1641 |
+
"learning_rate": 2.1409713259040628e-07,
|
1642 |
+
"loss": 0.0002,
|
1643 |
+
"reward": 1.3802083656191826,
|
1644 |
+
"reward_std": 0.29142854968085885,
|
1645 |
+
"rewards/equation_reward_func": 0.4427083432674408,
|
1646 |
+
"rewards/format_reward_func": 0.9375000186264515,
|
1647 |
+
"step": 252
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"completion_length": 320.135422706604,
|
1651 |
+
"epoch": 0.13546666666666668,
|
1652 |
+
"grad_norm": 0.09393829326895221,
|
1653 |
+
"kl": 0.2281494140625,
|
1654 |
+
"learning_rate": 2.105355856614115e-07,
|
1655 |
+
"loss": 0.0002,
|
1656 |
+
"reward": 1.3932292126119137,
|
1657 |
+
"reward_std": 0.26339731831103563,
|
1658 |
+
"rewards/equation_reward_func": 0.4479166797827929,
|
1659 |
+
"rewards/format_reward_func": 0.9453125186264515,
|
1660 |
+
"step": 254
|
1661 |
+
},
|
1662 |
+
{
|
1663 |
+
"completion_length": 296.93751096725464,
|
1664 |
+
"epoch": 0.13653333333333334,
|
1665 |
+
"grad_norm": 0.10209820757740125,
|
1666 |
+
"kl": 0.21038818359375,
|
1667 |
+
"learning_rate": 2.069822344107413e-07,
|
1668 |
+
"loss": 0.0002,
|
1669 |
+
"reward": 1.458333384245634,
|
1670 |
+
"reward_std": 0.2565371445380151,
|
1671 |
+
"rewards/equation_reward_func": 0.518229179084301,
|
1672 |
+
"rewards/format_reward_func": 0.9401041902601719,
|
1673 |
+
"step": 256
|
1674 |
+
},
|
1675 |
+
{
|
1676 |
+
"completion_length": 349.19271659851074,
|
1677 |
+
"epoch": 0.1376,
|
1678 |
+
"grad_norm": 0.08766590131943175,
|
1679 |
+
"kl": 0.20196533203125,
|
1680 |
+
"learning_rate": 2.034378167721599e-07,
|
1681 |
+
"loss": 0.0002,
|
1682 |
+
"reward": 1.3046875409781933,
|
1683 |
+
"reward_std": 0.26743903663009405,
|
1684 |
+
"rewards/equation_reward_func": 0.369791679084301,
|
1685 |
+
"rewards/format_reward_func": 0.9348958544433117,
|
1686 |
+
"step": 258
|
1687 |
+
},
|
1688 |
+
{
|
1689 |
+
"completion_length": 313.64844703674316,
|
1690 |
+
"epoch": 0.13866666666666666,
|
1691 |
+
"grad_norm": 0.06846377481636261,
|
1692 |
+
"kl": 0.21148681640625,
|
1693 |
+
"learning_rate": 1.9990306882416485e-07,
|
1694 |
+
"loss": 0.0002,
|
1695 |
+
"reward": 1.4401041865348816,
|
1696 |
+
"reward_std": 0.18869125936180353,
|
1697 |
+
"rewards/equation_reward_func": 0.47916667885147035,
|
1698 |
+
"rewards/format_reward_func": 0.9609375260770321,
|
1699 |
+
"step": 260
|
1700 |
+
},
|
1701 |
+
{
|
1702 |
+
"completion_length": 364.0937614440918,
|
1703 |
+
"epoch": 0.13973333333333332,
|
1704 |
+
"grad_norm": 0.09910364824859053,
|
1705 |
+
"kl": 0.19482421875,
|
1706 |
+
"learning_rate": 1.9637872463712362e-07,
|
1707 |
+
"loss": 0.0002,
|
1708 |
+
"reward": 1.3229167088866234,
|
1709 |
+
"reward_std": 0.28169540874660015,
|
1710 |
+
"rewards/equation_reward_func": 0.40364584513008595,
|
1711 |
+
"rewards/format_reward_func": 0.9192708507180214,
|
1712 |
+
"step": 262
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"completion_length": 299.85417461395264,
|
1716 |
+
"epoch": 0.1408,
|
1717 |
+
"grad_norm": 0.08446825243053117,
|
1718 |
+
"kl": 0.21746826171875,
|
1719 |
+
"learning_rate": 1.9286551612082773e-07,
|
1720 |
+
"loss": 0.0002,
|
1721 |
+
"reward": 1.4270833618938923,
|
1722 |
+
"reward_std": 0.254016081802547,
|
1723 |
+
"rewards/equation_reward_func": 0.4921875118743628,
|
1724 |
+
"rewards/format_reward_func": 0.9348958469927311,
|
1725 |
+
"step": 264
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"completion_length": 310.96875762939453,
|
1729 |
+
"epoch": 0.14186666666666667,
|
1730 |
+
"grad_norm": 0.08911856620012026,
|
1731 |
+
"kl": 0.20257568359375,
|
1732 |
+
"learning_rate": 1.8936417287249446e-07,
|
1733 |
+
"loss": 0.0002,
|
1734 |
+
"reward": 1.4843750521540642,
|
1735 |
+
"reward_std": 0.2710961364209652,
|
1736 |
+
"rewards/equation_reward_func": 0.5364583488553762,
|
1737 |
+
"rewards/format_reward_func": 0.9479166865348816,
|
1738 |
+
"step": 266
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"completion_length": 370.25782585144043,
|
1742 |
+
"epoch": 0.14293333333333333,
|
1743 |
+
"grad_norm": 0.09626183381346134,
|
1744 |
+
"kl": 0.20556640625,
|
1745 |
+
"learning_rate": 1.8587542202524985e-07,
|
1746 |
+
"loss": 0.0002,
|
1747 |
+
"reward": 1.2786458618938923,
|
1748 |
+
"reward_std": 0.3155774394981563,
|
1749 |
+
"rewards/equation_reward_func": 0.3567708437331021,
|
1750 |
+
"rewards/format_reward_func": 0.9218750186264515,
|
1751 |
+
"step": 268
|
1752 |
+
},
|
1753 |
+
{
|
1754 |
+
"completion_length": 332.5781316757202,
|
1755 |
+
"epoch": 0.144,
|
1756 |
+
"grad_norm": 0.08565923133416391,
|
1757 |
+
"kl": 0.19805908203125,
|
1758 |
+
"learning_rate": 1.82399988097123e-07,
|
1759 |
+
"loss": 0.0002,
|
1760 |
+
"reward": 1.4322917088866234,
|
1761 |
+
"reward_std": 0.2691522967070341,
|
1762 |
+
"rewards/equation_reward_func": 0.4713541753590107,
|
1763 |
+
"rewards/format_reward_func": 0.9609375111758709,
|
1764 |
+
"step": 270
|
1765 |
+
},
|
1766 |
+
{
|
1767 |
+
"completion_length": 319.74740505218506,
|
1768 |
+
"epoch": 0.14506666666666668,
|
1769 |
+
"grad_norm": 0.08562597807288291,
|
1770 |
+
"kl": 0.20941162109375,
|
1771 |
+
"learning_rate": 1.7893859284058378e-07,
|
1772 |
+
"loss": 0.0002,
|
1773 |
+
"reward": 1.437500026077032,
|
1774 |
+
"reward_std": 0.15510809421539307,
|
1775 |
+
"rewards/equation_reward_func": 0.48177084047347307,
|
1776 |
+
"rewards/format_reward_func": 0.9557291828095913,
|
1777 |
+
"step": 272
|
1778 |
+
},
|
1779 |
+
{
|
1780 |
+
"completion_length": 330.8229260444641,
|
1781 |
+
"epoch": 0.14613333333333334,
|
1782 |
+
"grad_norm": 0.09727298428810927,
|
1783 |
+
"kl": 0.21234130859375,
|
1784 |
+
"learning_rate": 1.7549195509265407e-07,
|
1785 |
+
"loss": 0.0002,
|
1786 |
+
"reward": 1.3671875335276127,
|
1787 |
+
"reward_std": 0.2629071534611285,
|
1788 |
+
"rewards/equation_reward_func": 0.4348958428017795,
|
1789 |
+
"rewards/format_reward_func": 0.932291679084301,
|
1790 |
+
"step": 274
|
1791 |
+
}
|
1792 |
+
],
|
1793 |
+
"logging_steps": 2,
|
1794 |
+
"max_steps": 450,
|
1795 |
+
"num_input_tokens_seen": 0,
|
1796 |
+
"num_train_epochs": 1,
|
1797 |
+
"save_steps": 25,
|
1798 |
+
"stateful_callbacks": {
|
1799 |
+
"TrainerControl": {
|
1800 |
+
"args": {
|
1801 |
+
"should_epoch_stop": false,
|
1802 |
+
"should_evaluate": false,
|
1803 |
+
"should_log": false,
|
1804 |
+
"should_save": true,
|
1805 |
+
"should_training_stop": false
|
1806 |
+
},
|
1807 |
+
"attributes": {}
|
1808 |
+
}
|
1809 |
+
},
|
1810 |
+
"total_flos": 0.0,
|
1811 |
+
"train_batch_size": 1,
|
1812 |
+
"trial_name": null,
|
1813 |
+
"trial_params": null
|
1814 |
+
}
|
checkpoint-275/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2f8dfc73276cdf6bf7e415fc836e3b5d7b7c6eef1548834ceef8db36f27a430
|
3 |
+
size 6840
|
checkpoint-275/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-275/zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoint-375/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoint-375/config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 2048,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 11008,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"max_window_layers": 70,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 16,
|
17 |
+
"num_hidden_layers": 36,
|
18 |
+
"num_key_value_heads": 2,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 1000000.0,
|
22 |
+
"sliding_window": null,
|
23 |
+
"tie_word_embeddings": true,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.48.1",
|
26 |
+
"use_cache": false,
|
27 |
+
"use_sliding_window": false,
|
28 |
+
"vocab_size": 151936
|
29 |
+
}
|
checkpoint-375/generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.48.1"
|
14 |
+
}
|