Pierce Maloney commited on
Commit
965e808
·
1 Parent(s): 7b65a30
Files changed (1) hide show
  1. handler.py +69 -0
handler.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from typing import Dict, List, Any
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, StoppingCriteria, StoppingCriteriaList
4
+
5
+ # Configure logging
6
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
7
+
8
+ class EndpointHandler():
9
+ def __init__(self, path=""):
10
+ logging.info("Initializing EndpointHandler with model path: %s", path)
11
+ tokenizer = AutoTokenizer.from_pretrained(path)
12
+ tokenizer.pad_token = tokenizer.eos_token
13
+ self.model = AutoModelForCausalLM.from_pretrained(path)
14
+ self.tokenizer = tokenizer
15
+ self.stopping_criteria = StoppingCriteriaList([StopAtPeriodCriteria(tokenizer)])
16
+
17
+ def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
18
+ logging.info("Starting inference")
19
+ inputs = data.pop("inputs", data)
20
+ additional_bad_words_ids = data.pop("additional_bad_words_ids", [])
21
+
22
+ # Log the input size
23
+ logging.info("Encoding inputs")
24
+ input_ids = self.tokenizer.encode(inputs, return_tensors="pt")
25
+ logging.info("Input IDs shape: %s", input_ids.shape)
26
+
27
+ max_generation_length = 75 # Desired number of tokens to generate
28
+ max_input_length = 4092 - max_generation_length # Maximum input length to allow space for generation
29
+
30
+ # 3070, 10456, [313, 334], [29898, 1068] corresponds to "(*", and we do not want to output a comment
31
+ # 13 is a newline character
32
+ # [1976, 441, 29889], [4920, 441, 29889] is "Abort." [4920, 18054, 29889] is "Aborted."
33
+ # [2087, 29885, 4430, 29889], [3253, 29885, 4430, 29889] is "Admitted."
34
+ # [3253, 29885, 4430, 29889]
35
+ bad_words_ids = [[3070], [313, 334], [10456], [13], [1976, 441, 29889], [2087, 29885, 4430, 29889], [4920, 441], [4920, 441, 29889], [4920, 18054, 29889], [29898, 1068], [3253, 29885, 4430, 29889]]
36
+ bad_words_ids.extend(additional_bad_words_ids)
37
+
38
+ # Truncation and generation logging
39
+ if input_ids.shape[1] > max_input_length:
40
+ logging.info("Truncating input IDs to fit within max input length")
41
+ input_ids = input_ids[:, -max_input_length:]
42
+
43
+ max_length = input_ids.shape[1] + max_generation_length
44
+
45
+ logging.info("Generating output")
46
+ generated_ids = self.model.generate(
47
+ input_ids,
48
+ max_length=max_length,
49
+ bad_words_ids=bad_words_ids,
50
+ temperature=0.2,
51
+ top_k=40,
52
+ do_sample=True,
53
+ stopping_criteria=self.stopping_criteria,
54
+ )
55
+ logging.info("Finished generating output")
56
+
57
+ generated_text = self.tokenizer.decode(generated_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
58
+ prediction = [{"generated_text": generated_text, "generated_ids": generated_ids[0][input_ids.shape[1]:].tolist()}]
59
+ logging.info("Inference complete")
60
+ return prediction
61
+
62
+ class StopAtPeriodCriteria(StoppingCriteria):
63
+ def __init__(self, tokenizer):
64
+ self.tokenizer = tokenizer
65
+
66
+ def __call__(self, input_ids, scores, **kwargs):
67
+ last_token_text = self.tokenizer.decode(input_ids[:, -1], skip_special_tokens=True)
68
+ logging.info("StopAtPeriodCriteria called. Last token text: '%s'", last_token_text)
69
+ return '.' in last_token_text