File size: 3,092 Bytes
060ea69 675d607 060ea69 675d607 060ea69 a6047ae 060ea69 675d607 060ea69 675d607 a6047ae 060ea69 a6047ae 060ea69 675d607 060ea69 675d607 060ea69 a6047ae 060ea69 675d607 060ea69 675d607 060ea69 675d607 060ea69 675d607 060ea69 675d607 060ea69 675d607 060ea69 675d607 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
language: pt
license: apache-2.0
tags:
- generated_from_trainer
- whisper-event
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: openai/whisper-medium
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0
type: mozilla-foundation/common_voice_11_0
config: pt
split: test
args: pt
metrics:
- name: Wer
type: wer
value: 6.598745817992301
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Portuguese Medium Whisper
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the common_voice_11_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2628
- Wer: 6.5987
## Blog post
All information about this model in this blog post: [Speech-to-Text & IA | Transcreva qualquer áudio para o português com o Whisper (OpenAI)... sem nenhum custo!](https://medium.com/@pierre_guillou/speech-to-text-ia-transcreva-qualquer-%C3%A1udio-para-o-portugu%C3%AAs-com-o-whisper-openai-sem-ad0c17384681).
## New SOTA
The Normalized WER in the [OpenAI Whisper article](https://cdn.openai.com/papers/whisper.pdf) with the [Common Voice 9.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_9_0) test dataset is 8.1.
As this test dataset is similar to the [Common Voice 11.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) test dataset used to evaluate our model (WER and WER Norm), it means that **our Portuguese Medium Whisper is better than the [Medium Whisper](https://huggingface.co/openai/whisper-medium) model at transcribing audios Portuguese in text** (and even better than the [Whisper Large](https://huggingface.co/openai/whisper-large) that has a WER Norm of 7.1!).
![OpenAI results with Whisper Medium and Test dataset of Commons Voice 9.0](https://huggingface.co/pierreguillou/whisper-medium-portuguese/resolve/main/whisper_medium_portuguese_wer_commonvoice9.png)
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9e-06
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 6000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.0333 | 2.07 | 1500 | 0.2073 | 6.9770 |
| 0.0061 | 5.05 | 3000 | 0.2628 | 6.5987 |
| 0.0007 | 8.03 | 4500 | 0.2960 | 6.6979 |
| 0.0004 | 11.0 | 6000 | 0.3212 | 6.6794 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2 |