pjbhaumik commited on
Commit
23faa01
·
verified ·
1 Parent(s): 646c081

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,540 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - dataset_size:10K<n<100K
9
+ - loss:MultipleNegativesSymmetricRankingLoss
10
+ base_model: distilbert/distilbert-base-uncased
11
+ metrics:
12
+ - pearson_cosine
13
+ - spearman_cosine
14
+ - pearson_manhattan
15
+ - spearman_manhattan
16
+ - pearson_euclidean
17
+ - spearman_euclidean
18
+ - pearson_dot
19
+ - spearman_dot
20
+ - pearson_max
21
+ - spearman_max
22
+ widget:
23
+ - source_sentence: what is GOGO
24
+ sentences:
25
+ - What is Viasat
26
+ - are we flying into Tel Aviv
27
+ - how do i correct a name in term
28
+ - source_sentence: What is EU 261
29
+ sentences:
30
+ - is puj a EU compensation country
31
+ - can i take my bicycle on af
32
+ - flight delays over 6 hours
33
+ - source_sentence: Can i get wifi
34
+ sentences:
35
+ - which aircrafts do not have wifi
36
+ - military traveling with pet
37
+ - baggage delay to carousel
38
+ - source_sentence: austin airport
39
+ sentences:
40
+ - What time is IAH open
41
+ - amex card free checked bag
42
+ - what is upgrade companion
43
+ - source_sentence: pets in cargo
44
+ sentences:
45
+ - can a pet travel in cargo
46
+ - baggage exceptions for Amex
47
+ - how do I get sky priority
48
+ pipeline_tag: sentence-similarity
49
+ model-index:
50
+ - name: SentenceTransformer based on distilbert/distilbert-base-uncased
51
+ results:
52
+ - task:
53
+ type: semantic-similarity
54
+ name: Semantic Similarity
55
+ dataset:
56
+ name: eval examples
57
+ type: eval_examples
58
+ metrics:
59
+ - type: pearson_cosine
60
+ value: .nan
61
+ name: Pearson Cosine
62
+ - type: spearman_cosine
63
+ value: .nan
64
+ name: Spearman Cosine
65
+ - type: pearson_manhattan
66
+ value: .nan
67
+ name: Pearson Manhattan
68
+ - type: spearman_manhattan
69
+ value: .nan
70
+ name: Spearman Manhattan
71
+ - type: pearson_euclidean
72
+ value: .nan
73
+ name: Pearson Euclidean
74
+ - type: spearman_euclidean
75
+ value: .nan
76
+ name: Spearman Euclidean
77
+ - type: pearson_dot
78
+ value: .nan
79
+ name: Pearson Dot
80
+ - type: spearman_dot
81
+ value: .nan
82
+ name: Spearman Dot
83
+ - type: pearson_max
84
+ value: .nan
85
+ name: Pearson Max
86
+ - type: spearman_max
87
+ value: .nan
88
+ name: Spearman Max
89
+ ---
90
+
91
+ # SentenceTransformer based on distilbert/distilbert-base-uncased
92
+
93
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
94
+
95
+ ## Model Details
96
+
97
+ ### Model Description
98
+ - **Model Type:** Sentence Transformer
99
+ - **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
100
+ - **Maximum Sequence Length:** 512 tokens
101
+ - **Output Dimensionality:** 768 tokens
102
+ - **Similarity Function:** Cosine Similarity
103
+ <!-- - **Training Dataset:** Unknown -->
104
+ <!-- - **Language:** Unknown -->
105
+ <!-- - **License:** Unknown -->
106
+
107
+ ### Model Sources
108
+
109
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
110
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
111
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
112
+
113
+ ### Full Model Architecture
114
+
115
+ ```
116
+ SentenceTransformer(
117
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
118
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
119
+ )
120
+ ```
121
+
122
+ ## Usage
123
+
124
+ ### Direct Usage (Sentence Transformers)
125
+
126
+ First install the Sentence Transformers library:
127
+
128
+ ```bash
129
+ pip install -U sentence-transformers
130
+ ```
131
+
132
+ Then you can load this model and run inference.
133
+ ```python
134
+ from sentence_transformers import SentenceTransformer
135
+
136
+ # Download from the 🤗 Hub
137
+ model = SentenceTransformer("pjbhaumik/biencoder-finetune-model-v9")
138
+ # Run inference
139
+ sentences = [
140
+ 'pets in cargo',
141
+ 'can a pet travel in cargo',
142
+ 'baggage exceptions for Amex',
143
+ ]
144
+ embeddings = model.encode(sentences)
145
+ print(embeddings.shape)
146
+ # [3, 768]
147
+
148
+ # Get the similarity scores for the embeddings
149
+ similarities = model.similarity(embeddings, embeddings)
150
+ print(similarities.shape)
151
+ # [3, 3]
152
+ ```
153
+
154
+ <!--
155
+ ### Direct Usage (Transformers)
156
+
157
+ <details><summary>Click to see the direct usage in Transformers</summary>
158
+
159
+ </details>
160
+ -->
161
+
162
+ <!--
163
+ ### Downstream Usage (Sentence Transformers)
164
+
165
+ You can finetune this model on your own dataset.
166
+
167
+ <details><summary>Click to expand</summary>
168
+
169
+ </details>
170
+ -->
171
+
172
+ <!--
173
+ ### Out-of-Scope Use
174
+
175
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
176
+ -->
177
+
178
+ ## Evaluation
179
+
180
+ ### Metrics
181
+
182
+ #### Semantic Similarity
183
+ * Dataset: `eval_examples`
184
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
185
+
186
+ | Metric | Value |
187
+ |:-------------------|:--------|
188
+ | pearson_cosine | nan |
189
+ | spearman_cosine | nan |
190
+ | pearson_manhattan | nan |
191
+ | spearman_manhattan | nan |
192
+ | pearson_euclidean | nan |
193
+ | spearman_euclidean | nan |
194
+ | pearson_dot | nan |
195
+ | spearman_dot | nan |
196
+ | pearson_max | nan |
197
+ | **spearman_max** | **nan** |
198
+
199
+ <!--
200
+ ## Bias, Risks and Limitations
201
+
202
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
203
+ -->
204
+
205
+ <!--
206
+ ### Recommendations
207
+
208
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
209
+ -->
210
+
211
+ ## Training Details
212
+
213
+ ### Training Dataset
214
+
215
+ #### Unnamed Dataset
216
+
217
+
218
+ * Size: 15,488 training samples
219
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
220
+ * Approximate statistics based on the first 1000 samples:
221
+ | | sentence_0 | sentence_1 | label |
222
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------|
223
+ | type | string | string | int |
224
+ | details | <ul><li>min: 4 tokens</li><li>mean: 10.4 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.14 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
225
+ * Samples:
226
+ | sentence_0 | sentence_1 | label |
227
+ |:-----------------------------------------------------------------|:-------------------------------------------------------------------------------------|:---------------|
228
+ | <code>how to use a companion certificate on delta.com</code> | <code>SHOPPING ON DELTA.COM FOR AMEX CERT</code> | <code>1</code> |
229
+ | <code>is jamaica can be booked with companion certificate</code> | <code>what areas can the American Express companion certificate be applied to</code> | <code>1</code> |
230
+ | <code>how do i book award travel on klm</code> | <code>can you book an air france ticket with miles</code> | <code>1</code> |
231
+ * Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
232
+ ```json
233
+ {
234
+ "scale": 20.0,
235
+ "similarity_fct": "cos_sim"
236
+ }
237
+ ```
238
+
239
+ ### Training Hyperparameters
240
+ #### Non-Default Hyperparameters
241
+
242
+ - `eval_strategy`: steps
243
+ - `per_device_train_batch_size`: 16
244
+ - `per_device_eval_batch_size`: 16
245
+ - `num_train_epochs`: 12
246
+ - `multi_dataset_batch_sampler`: round_robin
247
+
248
+ #### All Hyperparameters
249
+ <details><summary>Click to expand</summary>
250
+
251
+ - `overwrite_output_dir`: False
252
+ - `do_predict`: False
253
+ - `eval_strategy`: steps
254
+ - `prediction_loss_only`: True
255
+ - `per_device_train_batch_size`: 16
256
+ - `per_device_eval_batch_size`: 16
257
+ - `per_gpu_train_batch_size`: None
258
+ - `per_gpu_eval_batch_size`: None
259
+ - `gradient_accumulation_steps`: 1
260
+ - `eval_accumulation_steps`: None
261
+ - `learning_rate`: 5e-05
262
+ - `weight_decay`: 0.0
263
+ - `adam_beta1`: 0.9
264
+ - `adam_beta2`: 0.999
265
+ - `adam_epsilon`: 1e-08
266
+ - `max_grad_norm`: 1
267
+ - `num_train_epochs`: 12
268
+ - `max_steps`: -1
269
+ - `lr_scheduler_type`: linear
270
+ - `lr_scheduler_kwargs`: {}
271
+ - `warmup_ratio`: 0.0
272
+ - `warmup_steps`: 0
273
+ - `log_level`: passive
274
+ - `log_level_replica`: warning
275
+ - `log_on_each_node`: True
276
+ - `logging_nan_inf_filter`: True
277
+ - `save_safetensors`: True
278
+ - `save_on_each_node`: False
279
+ - `save_only_model`: False
280
+ - `restore_callback_states_from_checkpoint`: False
281
+ - `no_cuda`: False
282
+ - `use_cpu`: False
283
+ - `use_mps_device`: False
284
+ - `seed`: 42
285
+ - `data_seed`: None
286
+ - `jit_mode_eval`: False
287
+ - `use_ipex`: False
288
+ - `bf16`: False
289
+ - `fp16`: False
290
+ - `fp16_opt_level`: O1
291
+ - `half_precision_backend`: auto
292
+ - `bf16_full_eval`: False
293
+ - `fp16_full_eval`: False
294
+ - `tf32`: None
295
+ - `local_rank`: 0
296
+ - `ddp_backend`: None
297
+ - `tpu_num_cores`: None
298
+ - `tpu_metrics_debug`: False
299
+ - `debug`: []
300
+ - `dataloader_drop_last`: False
301
+ - `dataloader_num_workers`: 0
302
+ - `dataloader_prefetch_factor`: None
303
+ - `past_index`: -1
304
+ - `disable_tqdm`: False
305
+ - `remove_unused_columns`: True
306
+ - `label_names`: None
307
+ - `load_best_model_at_end`: False
308
+ - `ignore_data_skip`: False
309
+ - `fsdp`: []
310
+ - `fsdp_min_num_params`: 0
311
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
312
+ - `fsdp_transformer_layer_cls_to_wrap`: None
313
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
314
+ - `deepspeed`: None
315
+ - `label_smoothing_factor`: 0.0
316
+ - `optim`: adamw_torch
317
+ - `optim_args`: None
318
+ - `adafactor`: False
319
+ - `group_by_length`: False
320
+ - `length_column_name`: length
321
+ - `ddp_find_unused_parameters`: None
322
+ - `ddp_bucket_cap_mb`: None
323
+ - `ddp_broadcast_buffers`: False
324
+ - `dataloader_pin_memory`: True
325
+ - `dataloader_persistent_workers`: False
326
+ - `skip_memory_metrics`: True
327
+ - `use_legacy_prediction_loop`: False
328
+ - `push_to_hub`: False
329
+ - `resume_from_checkpoint`: None
330
+ - `hub_model_id`: None
331
+ - `hub_strategy`: every_save
332
+ - `hub_private_repo`: False
333
+ - `hub_always_push`: False
334
+ - `gradient_checkpointing`: False
335
+ - `gradient_checkpointing_kwargs`: None
336
+ - `include_inputs_for_metrics`: False
337
+ - `eval_do_concat_batches`: True
338
+ - `fp16_backend`: auto
339
+ - `push_to_hub_model_id`: None
340
+ - `push_to_hub_organization`: None
341
+ - `mp_parameters`:
342
+ - `auto_find_batch_size`: False
343
+ - `full_determinism`: False
344
+ - `torchdynamo`: None
345
+ - `ray_scope`: last
346
+ - `ddp_timeout`: 1800
347
+ - `torch_compile`: False
348
+ - `torch_compile_backend`: None
349
+ - `torch_compile_mode`: None
350
+ - `dispatch_batches`: None
351
+ - `split_batches`: None
352
+ - `include_tokens_per_second`: False
353
+ - `include_num_input_tokens_seen`: False
354
+ - `neftune_noise_alpha`: None
355
+ - `optim_target_modules`: None
356
+ - `batch_eval_metrics`: False
357
+ - `batch_sampler`: batch_sampler
358
+ - `multi_dataset_batch_sampler`: round_robin
359
+
360
+ </details>
361
+
362
+ ### Training Logs
363
+ <details><summary>Click to expand</summary>
364
+
365
+ | Epoch | Step | Training Loss | eval_examples_spearman_max |
366
+ |:-------:|:-----:|:-------------:|:--------------------------:|
367
+ | 0.1033 | 100 | - | nan |
368
+ | 0.2066 | 200 | - | nan |
369
+ | 0.3099 | 300 | - | nan |
370
+ | 0.4132 | 400 | - | nan |
371
+ | 0.5165 | 500 | 0.7655 | nan |
372
+ | 0.6198 | 600 | - | nan |
373
+ | 0.7231 | 700 | - | nan |
374
+ | 0.8264 | 800 | - | nan |
375
+ | 0.9298 | 900 | - | nan |
376
+ | 1.0 | 968 | - | nan |
377
+ | 1.0331 | 1000 | 0.3727 | nan |
378
+ | 1.1364 | 1100 | - | nan |
379
+ | 1.2397 | 1200 | - | nan |
380
+ | 1.3430 | 1300 | - | nan |
381
+ | 1.4463 | 1400 | - | nan |
382
+ | 1.5496 | 1500 | 0.2686 | nan |
383
+ | 1.6529 | 1600 | - | nan |
384
+ | 1.7562 | 1700 | - | nan |
385
+ | 1.8595 | 1800 | - | nan |
386
+ | 1.9628 | 1900 | - | nan |
387
+ | 2.0 | 1936 | - | nan |
388
+ | 2.0661 | 2000 | 0.2709 | nan |
389
+ | 2.1694 | 2100 | - | nan |
390
+ | 2.2727 | 2200 | - | nan |
391
+ | 2.3760 | 2300 | - | nan |
392
+ | 2.4793 | 2400 | - | nan |
393
+ | 2.5826 | 2500 | 0.231 | nan |
394
+ | 2.6860 | 2600 | - | nan |
395
+ | 2.7893 | 2700 | - | nan |
396
+ | 2.8926 | 2800 | - | nan |
397
+ | 2.9959 | 2900 | - | nan |
398
+ | 3.0 | 2904 | - | nan |
399
+ | 3.0992 | 3000 | 0.2461 | nan |
400
+ | 3.2025 | 3100 | - | nan |
401
+ | 3.3058 | 3200 | - | nan |
402
+ | 3.4091 | 3300 | - | nan |
403
+ | 3.5124 | 3400 | - | nan |
404
+ | 3.6157 | 3500 | 0.2181 | nan |
405
+ | 3.7190 | 3600 | - | nan |
406
+ | 3.8223 | 3700 | - | nan |
407
+ | 3.9256 | 3800 | - | nan |
408
+ | 4.0 | 3872 | - | nan |
409
+ | 4.0289 | 3900 | - | nan |
410
+ | 4.1322 | 4000 | 0.2288 | nan |
411
+ | 4.2355 | 4100 | - | nan |
412
+ | 4.3388 | 4200 | - | nan |
413
+ | 4.4421 | 4300 | - | nan |
414
+ | 4.5455 | 4400 | - | nan |
415
+ | 4.6488 | 4500 | 0.2123 | nan |
416
+ | 4.7521 | 4600 | - | nan |
417
+ | 4.8554 | 4700 | - | nan |
418
+ | 4.9587 | 4800 | - | nan |
419
+ | 5.0 | 4840 | - | nan |
420
+ | 5.0620 | 4900 | - | nan |
421
+ | 5.1653 | 5000 | 0.2254 | nan |
422
+ | 5.2686 | 5100 | - | nan |
423
+ | 5.3719 | 5200 | - | nan |
424
+ | 5.4752 | 5300 | - | nan |
425
+ | 5.5785 | 5400 | - | nan |
426
+ | 5.6818 | 5500 | 0.2077 | nan |
427
+ | 5.7851 | 5600 | - | nan |
428
+ | 5.8884 | 5700 | - | nan |
429
+ | 5.9917 | 5800 | - | nan |
430
+ | 6.0 | 5808 | - | nan |
431
+ | 6.0950 | 5900 | - | nan |
432
+ | 6.1983 | 6000 | 0.218 | nan |
433
+ | 6.3017 | 6100 | - | nan |
434
+ | 6.4050 | 6200 | - | nan |
435
+ | 6.5083 | 6300 | - | nan |
436
+ | 6.6116 | 6400 | - | nan |
437
+ | 6.7149 | 6500 | 0.206 | nan |
438
+ | 6.8182 | 6600 | - | nan |
439
+ | 6.9215 | 6700 | - | nan |
440
+ | 7.0 | 6776 | - | nan |
441
+ | 7.0248 | 6800 | - | nan |
442
+ | 7.1281 | 6900 | - | nan |
443
+ | 7.2314 | 7000 | 0.2126 | nan |
444
+ | 7.3347 | 7100 | - | nan |
445
+ | 7.4380 | 7200 | - | nan |
446
+ | 7.5413 | 7300 | - | nan |
447
+ | 7.6446 | 7400 | - | nan |
448
+ | 7.7479 | 7500 | 0.2065 | nan |
449
+ | 7.8512 | 7600 | - | nan |
450
+ | 7.9545 | 7700 | - | nan |
451
+ | 8.0 | 7744 | - | nan |
452
+ | 8.0579 | 7800 | - | nan |
453
+ | 8.1612 | 7900 | - | nan |
454
+ | 8.2645 | 8000 | 0.2068 | nan |
455
+ | 8.3678 | 8100 | - | nan |
456
+ | 8.4711 | 8200 | - | nan |
457
+ | 8.5744 | 8300 | - | nan |
458
+ | 8.6777 | 8400 | - | nan |
459
+ | 8.7810 | 8500 | 0.2014 | nan |
460
+ | 8.8843 | 8600 | - | nan |
461
+ | 8.9876 | 8700 | - | nan |
462
+ | 9.0 | 8712 | - | nan |
463
+ | 9.0909 | 8800 | - | nan |
464
+ | 9.1942 | 8900 | - | nan |
465
+ | 9.2975 | 9000 | 0.2057 | nan |
466
+ | 9.4008 | 9100 | - | nan |
467
+ | 9.5041 | 9200 | - | nan |
468
+ | 9.6074 | 9300 | - | nan |
469
+ | 9.7107 | 9400 | - | nan |
470
+ | 9.8140 | 9500 | 0.1969 | nan |
471
+ | 9.9174 | 9600 | - | nan |
472
+ | 10.0 | 9680 | - | nan |
473
+ | 10.0207 | 9700 | - | nan |
474
+ | 10.1240 | 9800 | - | nan |
475
+ | 10.2273 | 9900 | - | nan |
476
+ | 10.3306 | 10000 | 0.2023 | nan |
477
+ | 10.4339 | 10100 | - | nan |
478
+ | 10.5372 | 10200 | - | nan |
479
+ | 10.6405 | 10300 | - | nan |
480
+ | 10.7438 | 10400 | - | nan |
481
+ | 10.8471 | 10500 | 0.1946 | nan |
482
+ | 10.9504 | 10600 | - | nan |
483
+ | 11.0 | 10648 | - | nan |
484
+ | 11.0537 | 10700 | - | nan |
485
+ | 11.1570 | 10800 | - | nan |
486
+ | 11.2603 | 10900 | - | nan |
487
+ | 11.3636 | 11000 | 0.1982 | nan |
488
+ | 11.4669 | 11100 | - | nan |
489
+ | 11.5702 | 11200 | - | nan |
490
+ | 11.6736 | 11300 | - | nan |
491
+ | 11.7769 | 11400 | - | nan |
492
+ | 11.8802 | 11500 | 0.1919 | nan |
493
+ | 11.9835 | 11600 | - | nan |
494
+ | 12.0 | 11616 | - | nan |
495
+
496
+ </details>
497
+
498
+ ### Framework Versions
499
+ - Python: 3.10.14
500
+ - Sentence Transformers: 3.0.0
501
+ - Transformers: 4.41.2
502
+ - PyTorch: 2.1.0
503
+ - Accelerate: 0.30.1
504
+ - Datasets: 2.19.1
505
+ - Tokenizers: 0.19.1
506
+
507
+ ## Citation
508
+
509
+ ### BibTeX
510
+
511
+ #### Sentence Transformers
512
+ ```bibtex
513
+ @inproceedings{reimers-2019-sentence-bert,
514
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
515
+ author = "Reimers, Nils and Gurevych, Iryna",
516
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
517
+ month = "11",
518
+ year = "2019",
519
+ publisher = "Association for Computational Linguistics",
520
+ url = "https://arxiv.org/abs/1908.10084",
521
+ }
522
+ ```
523
+
524
+ <!--
525
+ ## Glossary
526
+
527
+ *Clearly define terms in order to be accessible across audiences.*
528
+ -->
529
+
530
+ <!--
531
+ ## Model Card Authors
532
+
533
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
534
+ -->
535
+
536
+ <!--
537
+ ## Model Card Contact
538
+
539
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
540
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilbert-base-uncased",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertModel"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "pad_token_id": 0,
17
+ "qa_dropout": 0.1,
18
+ "seq_classif_dropout": 0.2,
19
+ "sinusoidal_pos_embds": false,
20
+ "tie_weights_": true,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "vocab_size": 30522
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e77cbf4e242b56ab29454849ed5c7c5baca410c5952c9a264f36faab52277c69
3
+ size 265462608
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "DistilBertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff