File size: 2,087 Bytes
d59b33a
 
 
 
f37f905
 
d59b33a
d0cbcb4
 
d59b33a
 
 
 
 
 
 
 
 
 
 
d0cbcb4
f37f905
0401ea8
 
d59b33a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2fb831
d59b33a
 
 
 
f37f905
 
0401ea8
 
 
 
 
 
 
 
 
 
d59b33a
 
 
 
 
fb90821
d59b33a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
base_model: google/vit-base-patch16-224-in21k
library_name: peft
license: apache-2.0
metrics:
- accuracy
tags:
- image-classification
- vision
- generated_from_trainer
model-index:
- name: only-lora-beans-vit-base-patch16-224-in21k
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# only-lora-beans-vit-base-patch16-224-in21k

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0987
- Accuracy: 0.3383

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 10.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.9625        | 1.0   | 130  | 1.1997          | 0.3383   |
| 1.2026        | 2.0   | 260  | 1.1205          | 0.3308   |
| 1.1354        | 3.0   | 390  | 1.0991          | 0.3308   |
| 1.1071        | 4.0   | 520  | 1.1013          | 0.3308   |
| 1.102         | 5.0   | 650  | 1.0997          | 0.3308   |
| 1.1064        | 6.0   | 780  | 1.0998          | 0.3383   |
| 1.1008        | 7.0   | 910  | 1.0999          | 0.3308   |
| 1.1015        | 8.0   | 1040 | 1.0988          | 0.3308   |
| 1.0998        | 9.0   | 1170 | 1.1043          | 0.3308   |
| 1.1085        | 10.0  | 1300 | 1.0987          | 0.3383   |


### Framework versions

- PEFT 0.12.1.dev0
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1