File size: 2,088 Bytes
d59b33a f37f905 d59b33a 68a4807 d59b33a 68a4807 f37f905 68a4807 d59b33a 1b826ed d59b33a ef45c5b d59b33a f37f905 1b826ed d59b33a 5320145 fb90821 d59b33a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
base_model: google/vit-base-patch16-224-in21k
library_name: peft
license: apache-2.0
metrics:
- accuracy
tags:
- image-classification
- vision
- generated_from_trainer
model-index:
- name: only-lora-beans-vit-base-patch16-224-in21k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# only-lora-beans-vit-base-patch16-224-in21k
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6898
- Accuracy: 0.3383
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4713 | 1.0 | 130 | 0.0950 | 0.9549 |
| 0.1717 | 2.0 | 260 | 0.0885 | 0.9699 |
| 0.1941 | 3.0 | 390 | 0.0368 | 0.9925 |
| 0.1484 | 4.0 | 520 | 0.1005 | 0.9699 |
| 0.1574 | 5.0 | 650 | 0.0640 | 0.9774 |
| 0.1948 | 6.0 | 780 | 0.1892 | 0.9173 |
| 0.4159 | 7.0 | 910 | 0.1530 | 0.9699 |
| 0.4951 | 8.0 | 1040 | 0.7176 | 0.6842 |
| 0.6818 | 9.0 | 1170 | 1.4557 | 0.4286 |
| 0.7749 | 10.0 | 1300 | 0.7070 | 0.7293 |
### Framework versions
- PEFT 0.12.1.dev0
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1 |