File size: 2,088 Bytes
d59b33a
 
 
 
f37f905
 
d59b33a
68a4807
 
d59b33a
 
 
 
 
 
 
 
 
 
 
68a4807
f37f905
68a4807
 
d59b33a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b826ed
d59b33a
 
 
 
ef45c5b
d59b33a
 
 
 
f37f905
 
1b826ed
 
 
 
 
 
 
 
 
 
d59b33a
 
 
 
5320145
fb90821
d59b33a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
base_model: google/vit-base-patch16-224-in21k
library_name: peft
license: apache-2.0
metrics:
- accuracy
tags:
- image-classification
- vision
- generated_from_trainer
model-index:
- name: only-lora-beans-vit-base-patch16-224-in21k
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# only-lora-beans-vit-base-patch16-224-in21k

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6898
- Accuracy: 0.3383

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 10.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4713        | 1.0   | 130  | 0.0950          | 0.9549   |
| 0.1717        | 2.0   | 260  | 0.0885          | 0.9699   |
| 0.1941        | 3.0   | 390  | 0.0368          | 0.9925   |
| 0.1484        | 4.0   | 520  | 0.1005          | 0.9699   |
| 0.1574        | 5.0   | 650  | 0.0640          | 0.9774   |
| 0.1948        | 6.0   | 780  | 0.1892          | 0.9173   |
| 0.4159        | 7.0   | 910  | 0.1530          | 0.9699   |
| 0.4951        | 8.0   | 1040 | 0.7176          | 0.6842   |
| 0.6818        | 9.0   | 1170 | 1.4557          | 0.4286   |
| 0.7749        | 10.0  | 1300 | 0.7070          | 0.7293   |


### Framework versions

- PEFT 0.12.1.dev0
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1