Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
---
|
2 |
-
language:
|
|
|
3 |
library_name: sentence-transformers
|
4 |
tags:
|
5 |
- sentence-transformers
|
@@ -18,46 +19,11 @@ metrics:
|
|
18 |
- spearman_max
|
19 |
widget: []
|
20 |
pipeline_tag: sentence-similarity
|
21 |
-
|
22 |
-
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
name: Semantic Similarity
|
27 |
-
dataset:
|
28 |
-
name: Unknown
|
29 |
-
type: unknown
|
30 |
-
metrics:
|
31 |
-
- type: pearson_cosine
|
32 |
-
value: 0.841929698952355
|
33 |
-
name: Pearson Cosine
|
34 |
-
- type: spearman_cosine
|
35 |
-
value: 0.7942182059969294
|
36 |
-
name: Spearman Cosine
|
37 |
-
- type: pearson_manhattan
|
38 |
-
value: 0.8295844701949633
|
39 |
-
name: Pearson Manhattan
|
40 |
-
- type: spearman_manhattan
|
41 |
-
value: 0.7967029159438351
|
42 |
-
name: Spearman Manhattan
|
43 |
-
- type: pearson_euclidean
|
44 |
-
value: 0.8302175995746677
|
45 |
-
name: Pearson Euclidean
|
46 |
-
- type: spearman_euclidean
|
47 |
-
value: 0.7974109108557925
|
48 |
-
name: Spearman Euclidean
|
49 |
-
- type: pearson_dot
|
50 |
-
value: 0.8266168802012493
|
51 |
-
name: Pearson Dot
|
52 |
-
- type: spearman_dot
|
53 |
-
value: 0.7757964222446627
|
54 |
-
name: Spearman Dot
|
55 |
-
- type: pearson_max
|
56 |
-
value: 0.841929698952355
|
57 |
-
name: Pearson Max
|
58 |
-
- type: spearman_max
|
59 |
-
value: 0.7974109108557925
|
60 |
-
name: Spearman Max
|
61 |
---
|
62 |
|
63 |
# SentenceTransformer
|
@@ -76,12 +42,6 @@ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps
|
|
76 |
<!-- - **Language:** Unknown -->
|
77 |
<!-- - **License:** Unknown -->
|
78 |
|
79 |
-
### Model Sources
|
80 |
-
|
81 |
-
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
82 |
-
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
83 |
-
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
84 |
-
|
85 |
### Full Model Architecture
|
86 |
|
87 |
```
|
@@ -147,26 +107,6 @@ You can finetune this model on your own dataset.
|
|
147 |
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
148 |
-->
|
149 |
|
150 |
-
## Evaluation
|
151 |
-
|
152 |
-
### Metrics
|
153 |
-
|
154 |
-
#### Semantic Similarity
|
155 |
-
|
156 |
-
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
157 |
-
|
158 |
-
| Metric | Value |
|
159 |
-
|:--------------------|:-----------|
|
160 |
-
| pearson_cosine | 0.8419 |
|
161 |
-
| **spearman_cosine** | **0.7942** |
|
162 |
-
| pearson_manhattan | 0.8296 |
|
163 |
-
| spearman_manhattan | 0.7967 |
|
164 |
-
| pearson_euclidean | 0.8302 |
|
165 |
-
| spearman_euclidean | 0.7974 |
|
166 |
-
| pearson_dot | 0.8266 |
|
167 |
-
| spearman_dot | 0.7758 |
|
168 |
-
| pearson_max | 0.8419 |
|
169 |
-
| spearman_max | 0.7974 |
|
170 |
|
171 |
<!--
|
172 |
## Bias, Risks and Limitations
|
@@ -182,12 +122,6 @@ You can finetune this model on your own dataset.
|
|
182 |
|
183 |
## Training Details
|
184 |
|
185 |
-
### Training Logs
|
186 |
-
| Epoch | Step | spearman_cosine |
|
187 |
-
|:-----:|:----:|:---------------:|
|
188 |
-
| 0 | 0 | 0.7942 |
|
189 |
-
|
190 |
-
|
191 |
### Framework Versions
|
192 |
- Python: 3.10.13
|
193 |
- Sentence Transformers: 3.0.0
|
@@ -196,6 +130,28 @@ You can finetune this model on your own dataset.
|
|
196 |
- Accelerate: 0.30.1
|
197 |
- Datasets: 2.19.2
|
198 |
- Tokenizers: 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
|
200 |
## Citation
|
201 |
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- ja
|
4 |
library_name: sentence-transformers
|
5 |
tags:
|
6 |
- sentence-transformers
|
|
|
19 |
- spearman_max
|
20 |
widget: []
|
21 |
pipeline_tag: sentence-similarity
|
22 |
+
datasets:
|
23 |
+
- hpprc/emb
|
24 |
+
- hpprc/mqa-ja
|
25 |
+
- google-research-datasets/paws-x
|
26 |
+
base_model: pkshatech/GLuCoSE-base-ja
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
---
|
28 |
|
29 |
# SentenceTransformer
|
|
|
42 |
<!-- - **Language:** Unknown -->
|
43 |
<!-- - **License:** Unknown -->
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
### Full Model Architecture
|
46 |
|
47 |
```
|
|
|
107 |
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
108 |
-->
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
<!--
|
112 |
## Bias, Risks and Limitations
|
|
|
122 |
|
123 |
## Training Details
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
### Framework Versions
|
126 |
- Python: 3.10.13
|
127 |
- Sentence Transformers: 3.0.0
|
|
|
130 |
- Accelerate: 0.30.1
|
131 |
- Datasets: 2.19.2
|
132 |
- Tokenizers: 0.19.1
|
133 |
+
## Benchmarks
|
134 |
+
|
135 |
+
## Zero-shot Search
|
136 |
+
Evaluated with [MIRACL-ja](https://huggingface.co/datasets/miracl/miracl), [JQARA][https://huggingface.co/datasets/hotchpotch/JQaRA] and [MLDR-ja][https://huggingface.co/datasets/Shitao/MLDR].
|
137 |
+
|
138 |
+
| model | size | MIRACL<br>Recall@5 | JQaRA<br>nDCG@10 | MLDR<br>nDCG@10 |
|
139 |
+
|--------|--------|---------------------|-------------------|-------------------|
|
140 |
+
| me5-base | 0.3B | 84.2 | 47.2 | 25.4 |
|
141 |
+
| GLuCoSE | 0.1B | 53.3 | 30.8 | 25.2 |
|
142 |
+
| GLuCoSE v2 | 0.1B | 85.5 | 60.6 | 33.8 |
|
143 |
+
|
144 |
+
## JMTEB
|
145 |
+
Evaluated with [JMTEB][https://github.com/sbintuitions/JMTEB].
|
146 |
+
* Time-consuming [‘amazon_review_classification’, ‘mrtydi’, ‘jaqket’, ‘esci’] were excluded and evaluated.
|
147 |
+
* The average is a macro-average per task.
|
148 |
+
|
149 |
+
| model | size | Class. | Ret. | STS. | Clus. | Pair. | Avg. |
|
150 |
+
|--------|--------|--------|------|------|-------|-------|------|
|
151 |
+
| me5-base | 0.3B | 75.1 | 80.6 | 80.5 | 52.6 | 62.4 | 70.2 |
|
152 |
+
| GLuCoSE | 0.1B | 82.6 | 69.8 | 78.2 | 51.5 | 66.2 | 69.7 |
|
153 |
+
| GLuCoSE v2 | 0.1B | 80.5 | 82.8 | 83.0 | 49.8 | 62.4 | 71.7 |
|
154 |
+
|
155 |
|
156 |
## Citation
|
157 |
|