plegg commited on
Commit
662022a
·
1 Parent(s): cb0c68e

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.40 +/- 0.24
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f51b49320889c04066d42c03cfd0f7771d4bda40bd5a5c8d08c806dc59726e7d
3
+ size 108090
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2962d2d430>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f2962d23ab0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 50000,
45
+ "_total_timesteps": 50000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1677888401951663132,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAuVJ6PseX0zuzAgI/uVJ6PseX0zuzAgI/uVJ6PseX0zuzAgI/uVJ6PseX0zuzAgI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5fxSPi4c+D6DH/s9+dU8vk+B0r5SGs8/yu+xP1n/oD6YcdQ/IvVZv6KCub/r+o8/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC5Uno+x5fTO7MCAj8WQvQ8+RXxuQx72Ty5Uno+x5fTO7MCAj8WQvQ8+RXxuQx72Ty5Uno+x5fTO7MCAj8WQvQ8+RXxuQx72Ty5Uno+x5fTO7MCAj8WQvQ8+RXxuQx72TyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.24445619 0.0064573 0.5078537 ]\n [0.24445619 0.0064573 0.5078537 ]\n [0.24445619 0.0064573 0.5078537 ]\n [0.24445619 0.0064573 0.5078537 ]]",
60
+ "desired_goal": "[[ 0.20604284 0.48459 0.1226187 ]\n [-0.18440999 -0.4111428 1.6179907 ]\n [ 1.3901303 0.31444815 1.6597166 ]\n [-0.8513967 -1.4492991 1.1248449 ]]",
61
+ "observation": "[[ 2.4445619e-01 6.4573023e-03 5.0785369e-01 2.9816668e-02\n -4.5983473e-04 2.6547931e-02]\n [ 2.4445619e-01 6.4573023e-03 5.0785369e-01 2.9816668e-02\n -4.5983473e-04 2.6547931e-02]\n [ 2.4445619e-01 6.4573023e-03 5.0785369e-01 2.9816668e-02\n -4.5983473e-04 2.6547931e-02]\n [ 2.4445619e-01 6.4573023e-03 5.0785369e-01 2.9816668e-02\n -4.5983473e-04 2.6547931e-02]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABczku3zMCb5D0ms+kA4CPs8zAb07bDE+ZL1PPcKHNT3bIZE9CMTwPMxPh727eIk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.00698233 -0.13456911 0.23029427]\n [ 0.12700868 -0.03154355 0.17326443]\n [ 0.05071773 0.04431892 0.07086536]\n [ 0.02939035 -0.06607017 0.26849923]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrU7OUNxx/r+UhpRSlIwBbJRLMowBdJRHQGJek1EVnEl1fZQoaAZoCWgPQwhyFva0w1/+v5SGlFKUaBVLMmgWR0BiWWW+oLofdX2UKGgGaAloD0MIv9NkxtsqAMCUhpRSlGgVSzJoFkdAYlQoxYaHbnV9lChoBmgJaA9DCJjBGJEo1ATAlIaUUpRoFUsyaBZHQGJOlV94NZx1fZQoaAZoCWgPQwjtRh/zAYH+v5SGlFKUaBVLMmgWR0BiblLvkRzzdX2UKGgGaAloD0MIYto391dPBMCUhpRSlGgVSzJoFkdAYmko73fygHV9lChoBmgJaA9DCJ62RgTjIAbAlIaUUpRoFUsyaBZHQGJj29L6DXh1fZQoaAZoCWgPQwj9EvHW+ff/v5SGlFKUaBVLMmgWR0BiXkgbIcR2dX2UKGgGaAloD0MIvhQeNLsuAcCUhpRSlGgVSzJoFkdAYn1N+LFXJnV9lChoBmgJaA9DCB5ssdtnlf+/lIaUUpRoFUsyaBZHQGJ4IJiRW911fZQoaAZoCWgPQwjhfOpYpdQDwJSGlFKUaBVLMmgWR0BictNtZV4pdX2UKGgGaAloD0MIEMzR4/f2/7+UhpRSlGgVSzJoFkdAYm07ulXRxHV9lChoBmgJaA9DCAMkmkARKwHAlIaUUpRoFUsyaBZHQGKMpkXk5p91fZQoaAZoCWgPQwj/z2G+vOADwJSGlFKUaBVLMmgWR0Bih3n6l+EzdX2UKGgGaAloD0MIYLAbti2qAcCUhpRSlGgVSzJoFkdAYoIt/WlMy3V9lChoBmgJaA9DCLKBdLFp5f6/lIaUUpRoFUsyaBZHQGJ8m0NSZSh1fZQoaAZoCWgPQwjCps6j4h8EwJSGlFKUaBVLMmgWR0BiotTLns9kdX2UKGgGaAloD0MIwxA5fT1/AcCUhpRSlGgVSzJoFkdAYp3AM2FWXHV9lChoBmgJaA9DCJM5lnfV4wHAlIaUUpRoFUsyaBZHQGKYfWlMyrR1fZQoaAZoCWgPQwglXTP5ZpsEwJSGlFKUaBVLMmgWR0Biku+RHPNWdX2UKGgGaAloD0MILEme6/uw/7+UhpRSlGgVSzJoFkdAYrsKoAGSp3V9lChoBmgJaA9DCPq19dN/lgLAlIaUUpRoFUsyaBZHQGK16Mzdk8R1fZQoaAZoCWgPQwjrAl5m2OgBwJSGlFKUaBVLMmgWR0BisKOo5xR3dX2UKGgGaAloD0MIngd3Z+02/7+UhpRSlGgVSzJoFkdAYqsSxqwhXHV9lChoBmgJaA9DCD/jwoGQbAHAlIaUUpRoFUsyaBZHQGLSS3LFGXp1fZQoaAZoCWgPQwh5AfbRqWsBwJSGlFKUaBVLMmgWR0BizSdYnv2HdX2UKGgGaAloD0MISx5Pyw+c/b+UhpRSlGgVSzJoFkdAYsfhl18stnV9lChoBmgJaA9DCNrGn6hsOALAlIaUUpRoFUsyaBZHQGLCUkWykbh1fZQoaAZoCWgPQwiCdRw/VHoBwJSGlFKUaBVLMmgWR0Bi60cABDG+dX2UKGgGaAloD0MIZysv+Z/cAcCUhpRSlGgVSzJoFkdAYuYn6VMVUXV9lChoBmgJaA9DCE/nilJCsP6/lIaUUpRoFUsyaBZHQGLg/8VHnU51fZQoaAZoCWgPQwi6TbhX5g0AwJSGlFKUaBVLMmgWR0Bi23IQvpQldX2UKGgGaAloD0MI9KYiFcYWAMCUhpRSlGgVSzJoFkdAYwRfVI7NjnV9lChoBmgJaA9DCKGfqdctogLAlIaUUpRoFUsyaBZHQGL/PitJWeZ1fZQoaAZoCWgPQwjG98WlKm3/v5SGlFKUaBVLMmgWR0Bi+fzg/C66dX2UKGgGaAloD0MILxnHSPbIBMCUhpRSlGgVSzJoFkdAYvRvJA+pwXV9lChoBmgJaA9DCMA9z582Kv6/lIaUUpRoFUsyaBZHQGMdOLBKtgd1fZQoaAZoCWgPQwjpf7kWLaABwJSGlFKUaBVLMmgWR0BjGBtcfNiZdX2UKGgGaAloD0MIJ58e2zLABMCUhpRSlGgVSzJoFkdAYxLXYlIEsHV9lChoBmgJaA9DCPsfYK3atfy/lIaUUpRoFUsyaBZHQGMNR6v7m+11fZQoaAZoCWgPQwhjJ7wEp/4AwJSGlFKUaBVLMmgWR0BjNngrH2h7dX2UKGgGaAloD0MITOKsiJoIAMCUhpRSlGgVSzJoFkdAYzFLeQ+2VnV9lChoBmgJaA9DCNUEUfcBqAHAlIaUUpRoFUsyaBZHQGMr/wAlv611fZQoaAZoCWgPQwguxsA6jh/9v5SGlFKUaBVLMmgWR0BjJmryUcGUdX2UKGgGaAloD0MITOMXXkkSAcCUhpRSlGgVSzJoFkdAY0afzSThYXV9lChoBmgJaA9DCOuPMAxYEgDAlIaUUpRoFUsyaBZHQGNBc3uNPxh1fZQoaAZoCWgPQwhT51HxfycAwJSGlFKUaBVLMmgWR0BjPCjHn2ZidX2UKGgGaAloD0MI/G1PkNgOAcCUhpRSlGgVSzJoFkdAYzaXJo0yg3V9lChoBmgJaA9DCCEjoMIRJPu/lIaUUpRoFUsyaBZHQGNV6ScLBsR1fZQoaAZoCWgPQwifdCLBVBMAwJSGlFKUaBVLMmgWR0BjUL8R+SbIdX2UKGgGaAloD0MI0XZM3ZV9AsCUhpRSlGgVSzJoFkdAY0tx9XtBwHV9lChoBmgJaA9DCDEnaJPDJwTAlIaUUpRoFUsyaBZHQGNF2WpqASZ1fZQoaAZoCWgPQwg3UOCdfLoBwJSGlFKUaBVLMmgWR0BjZTnHNorXdX2UKGgGaAloD0MILEZda++T/r+UhpRSlGgVSzJoFkdAY2APdVNpNHV9lChoBmgJaA9DCIKOVrWkY/y/lIaUUpRoFUsyaBZHQGNaxA0Kqn51fZQoaAZoCWgPQwh2Gf7TDZQAwJSGlFKUaBVLMmgWR0BjVTFyaNModX2UKGgGaAloD0MIHEKVmj3Q/L+UhpRSlGgVSzJoFkdAY3QloDgZTHV9lChoBmgJaA9DCOXwSScS7ADAlIaUUpRoFUsyaBZHQGNu+H8CPp91fZQoaAZoCWgPQwhPstXllEABwJSGlFKUaBVLMmgWR0BjaasKb8WLdX2UKGgGaAloD0MItrsH6L5c/r+UhpRSlGgVSzJoFkdAY2QROk+HJ3V9lChoBmgJaA9DCBPzrKQVfwDAlIaUUpRoFUsyaBZHQGODGO2iL2p1fZQoaAZoCWgPQwjFjPD2IMQEwJSGlFKUaBVLMmgWR0BjfewiaAnVdX2UKGgGaAloD0MI4Ep2bASCAMCUhpRSlGgVSzJoFkdAY3inTAnDznV9lChoBmgJaA9DCNWxSumZ/gDAlIaUUpRoFUsyaBZHQGNzFaSs8xN1fZQoaAZoCWgPQwjG+3H75TMAwJSGlFKUaBVLMmgWR0BjkjyxzJZGdX2UKGgGaAloD0MIqmVrfZFwAsCUhpRSlGgVSzJoFkdAY40Np/PPcHV9lChoBmgJaA9DCJCiztxD4gDAlIaUUpRoFUsyaBZHQGOHww0wait1fZQoaAZoCWgPQwgbZ9MRwM3/v5SGlFKUaBVLMmgWR0Bjgisp5NXYdX2UKGgGaAloD0MIfc1y2eic/r+UhpRSlGgVSzJoFkdAY6EsYEW69XV9lChoBmgJaA9DCDnv/+OEyfy/lIaUUpRoFUsyaBZHQGOb/0NBnjB1fZQoaAZoCWgPQwj8VuvE5Xj9v5SGlFKUaBVLMmgWR0BjlrLZBcAzdX2UKGgGaAloD0MIiKBq9GpAAsCUhpRSlGgVSzJoFkdAY5Ee+23KCHV9lChoBmgJaA9DCCz0wTI2tP6/lIaUUpRoFUsyaBZHQGOwm65Gz8h1fZQoaAZoCWgPQwgFw7mGGdr/v5SGlFKUaBVLMmgWR0Bjq3TXrdFfdX2UKGgGaAloD0MIINPaNLaX/L+UhpRSlGgVSzJoFkdAY6YqWkadc3V9lChoBmgJaA9DCKirOxbbpPu/lIaUUpRoFUsyaBZHQGOgksJ6Y3N1fZQoaAZoCWgPQwh7TKQ0mwf9v5SGlFKUaBVLMmgWR0Bjv4f4h2W6dX2UKGgGaAloD0MIbqZCPBKv+r+UhpRSlGgVSzJoFkdAY7pZyMkyDnV9lChoBmgJaA9DCKXXZmMlJv+/lIaUUpRoFUsyaBZHQGO1DHwPRRd1fZQoaAZoCWgPQwhaSSu+oXACwJSGlFKUaBVLMmgWR0Bjr3RZ2ZAqdX2UKGgGaAloD0MI6X+5Fi0AAMCUhpRSlGgVSzJoFkdAY89O4XoC+3V9lChoBmgJaA9DCHS1FfvLLv2/lIaUUpRoFUsyaBZHQGPKIRRMvh91fZQoaAZoCWgPQwhSgCiYMUX8v5SGlFKUaBVLMmgWR0BjxNPci4axdX2UKGgGaAloD0MIH4XrUbje/L+UhpRSlGgVSzJoFkdAY789Mbm2cHV9lChoBmgJaA9DCFjKMsSxbgDAlIaUUpRoFUsyaBZHQGPeUQCjk+51fZQoaAZoCWgPQwi7nBIQkzD7v5SGlFKUaBVLMmgWR0Bj2SUJOWSmdX2UKGgGaAloD0MIP+PCgZAs/7+UhpRSlGgVSzJoFkdAY9PXyy2QXHV9lChoBmgJaA9DCP1reeV62/2/lIaUUpRoFUsyaBZHQGPOQA+6iCd1fZQoaAZoCWgPQwg6dlCJ61j6v5SGlFKUaBVLMmgWR0Bj7e2G7BfsdX2UKGgGaAloD0MIMKAX7lxY/L+UhpRSlGgVSzJoFkdAY+jCrtE5Q3V9lChoBmgJaA9DCI18XvHUAwHAlIaUUpRoFUsyaBZHQGPjeKCQLeB1fZQoaAZoCWgPQwjEsS5uoyECwJSGlFKUaBVLMmgWR0Bj3eARTS9edX2UKGgGaAloD0MIb2dfeZDe/7+UhpRSlGgVSzJoFkdAY/48kleF+XV9lChoBmgJaA9DCOI5W0BoPf+/lIaUUpRoFUsyaBZHQGP5Dye7L+x1fZQoaAZoCWgPQwg/NV66ScwAwJSGlFKUaBVLMmgWR0Bj88N6PbPAdX2UKGgGaAloD0MIlX7C2a3l/b+UhpRSlGgVSzJoFkdAY+4tMfzSTnV9lChoBmgJaA9DCKmgoupX+v+/lIaUUpRoFUsyaBZHQGQNzqrzXjF1fZQoaAZoCWgPQwgSMpBnly/7v5SGlFKUaBVLMmgWR0BkCKGlANXpdX2UKGgGaAloD0MIfbPNjemJ/L+UhpRSlGgVSzJoFkdAZANUT+NtInV9lChoBmgJaA9DCL76eOi7m/u/lIaUUpRoFUsyaBZHQGP9uwPiDNB1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 2500,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8793ad632b22493f9d6efe8bba2477a9dc96484eae5851db9960ab78f48337ab
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0632164c1a1f2a51af2b7538af9428d53001bea411cab0e0c437edbbcd1c754
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2962d2d430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2962d23ab0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 50000, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677888401951663132, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAuVJ6PseX0zuzAgI/uVJ6PseX0zuzAgI/uVJ6PseX0zuzAgI/uVJ6PseX0zuzAgI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5fxSPi4c+D6DH/s9+dU8vk+B0r5SGs8/yu+xP1n/oD6YcdQ/IvVZv6KCub/r+o8/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC5Uno+x5fTO7MCAj8WQvQ8+RXxuQx72Ty5Uno+x5fTO7MCAj8WQvQ8+RXxuQx72Ty5Uno+x5fTO7MCAj8WQvQ8+RXxuQx72Ty5Uno+x5fTO7MCAj8WQvQ8+RXxuQx72TyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.24445619 0.0064573 0.5078537 ]\n [0.24445619 0.0064573 0.5078537 ]\n [0.24445619 0.0064573 0.5078537 ]\n [0.24445619 0.0064573 0.5078537 ]]", "desired_goal": "[[ 0.20604284 0.48459 0.1226187 ]\n [-0.18440999 -0.4111428 1.6179907 ]\n [ 1.3901303 0.31444815 1.6597166 ]\n [-0.8513967 -1.4492991 1.1248449 ]]", "observation": "[[ 2.4445619e-01 6.4573023e-03 5.0785369e-01 2.9816668e-02\n -4.5983473e-04 2.6547931e-02]\n [ 2.4445619e-01 6.4573023e-03 5.0785369e-01 2.9816668e-02\n -4.5983473e-04 2.6547931e-02]\n [ 2.4445619e-01 6.4573023e-03 5.0785369e-01 2.9816668e-02\n -4.5983473e-04 2.6547931e-02]\n [ 2.4445619e-01 6.4573023e-03 5.0785369e-01 2.9816668e-02\n -4.5983473e-04 2.6547931e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABczku3zMCb5D0ms+kA4CPs8zAb07bDE+ZL1PPcKHNT3bIZE9CMTwPMxPh727eIk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.00698233 -0.13456911 0.23029427]\n [ 0.12700868 -0.03154355 0.17326443]\n [ 0.05071773 0.04431892 0.07086536]\n [ 0.02939035 -0.06607017 0.26849923]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrU7OUNxx/r+UhpRSlIwBbJRLMowBdJRHQGJek1EVnEl1fZQoaAZoCWgPQwhyFva0w1/+v5SGlFKUaBVLMmgWR0BiWWW+oLofdX2UKGgGaAloD0MIv9NkxtsqAMCUhpRSlGgVSzJoFkdAYlQoxYaHbnV9lChoBmgJaA9DCJjBGJEo1ATAlIaUUpRoFUsyaBZHQGJOlV94NZx1fZQoaAZoCWgPQwjtRh/zAYH+v5SGlFKUaBVLMmgWR0BiblLvkRzzdX2UKGgGaAloD0MIYto391dPBMCUhpRSlGgVSzJoFkdAYmko73fygHV9lChoBmgJaA9DCJ62RgTjIAbAlIaUUpRoFUsyaBZHQGJj29L6DXh1fZQoaAZoCWgPQwj9EvHW+ff/v5SGlFKUaBVLMmgWR0BiXkgbIcR2dX2UKGgGaAloD0MIvhQeNLsuAcCUhpRSlGgVSzJoFkdAYn1N+LFXJnV9lChoBmgJaA9DCB5ssdtnlf+/lIaUUpRoFUsyaBZHQGJ4IJiRW911fZQoaAZoCWgPQwjhfOpYpdQDwJSGlFKUaBVLMmgWR0BictNtZV4pdX2UKGgGaAloD0MIEMzR4/f2/7+UhpRSlGgVSzJoFkdAYm07ulXRxHV9lChoBmgJaA9DCAMkmkARKwHAlIaUUpRoFUsyaBZHQGKMpkXk5p91fZQoaAZoCWgPQwj/z2G+vOADwJSGlFKUaBVLMmgWR0Bih3n6l+EzdX2UKGgGaAloD0MIYLAbti2qAcCUhpRSlGgVSzJoFkdAYoIt/WlMy3V9lChoBmgJaA9DCLKBdLFp5f6/lIaUUpRoFUsyaBZHQGJ8m0NSZSh1fZQoaAZoCWgPQwjCps6j4h8EwJSGlFKUaBVLMmgWR0BiotTLns9kdX2UKGgGaAloD0MIwxA5fT1/AcCUhpRSlGgVSzJoFkdAYp3AM2FWXHV9lChoBmgJaA9DCJM5lnfV4wHAlIaUUpRoFUsyaBZHQGKYfWlMyrR1fZQoaAZoCWgPQwglXTP5ZpsEwJSGlFKUaBVLMmgWR0Biku+RHPNWdX2UKGgGaAloD0MILEme6/uw/7+UhpRSlGgVSzJoFkdAYrsKoAGSp3V9lChoBmgJaA9DCPq19dN/lgLAlIaUUpRoFUsyaBZHQGK16Mzdk8R1fZQoaAZoCWgPQwjrAl5m2OgBwJSGlFKUaBVLMmgWR0BisKOo5xR3dX2UKGgGaAloD0MIngd3Z+02/7+UhpRSlGgVSzJoFkdAYqsSxqwhXHV9lChoBmgJaA9DCD/jwoGQbAHAlIaUUpRoFUsyaBZHQGLSS3LFGXp1fZQoaAZoCWgPQwh5AfbRqWsBwJSGlFKUaBVLMmgWR0BizSdYnv2HdX2UKGgGaAloD0MISx5Pyw+c/b+UhpRSlGgVSzJoFkdAYsfhl18stnV9lChoBmgJaA9DCNrGn6hsOALAlIaUUpRoFUsyaBZHQGLCUkWykbh1fZQoaAZoCWgPQwiCdRw/VHoBwJSGlFKUaBVLMmgWR0Bi60cABDG+dX2UKGgGaAloD0MIZysv+Z/cAcCUhpRSlGgVSzJoFkdAYuYn6VMVUXV9lChoBmgJaA9DCE/nilJCsP6/lIaUUpRoFUsyaBZHQGLg/8VHnU51fZQoaAZoCWgPQwi6TbhX5g0AwJSGlFKUaBVLMmgWR0Bi23IQvpQldX2UKGgGaAloD0MI9KYiFcYWAMCUhpRSlGgVSzJoFkdAYwRfVI7NjnV9lChoBmgJaA9DCKGfqdctogLAlIaUUpRoFUsyaBZHQGL/PitJWeZ1fZQoaAZoCWgPQwjG98WlKm3/v5SGlFKUaBVLMmgWR0Bi+fzg/C66dX2UKGgGaAloD0MILxnHSPbIBMCUhpRSlGgVSzJoFkdAYvRvJA+pwXV9lChoBmgJaA9DCMA9z582Kv6/lIaUUpRoFUsyaBZHQGMdOLBKtgd1fZQoaAZoCWgPQwjpf7kWLaABwJSGlFKUaBVLMmgWR0BjGBtcfNiZdX2UKGgGaAloD0MIJ58e2zLABMCUhpRSlGgVSzJoFkdAYxLXYlIEsHV9lChoBmgJaA9DCPsfYK3atfy/lIaUUpRoFUsyaBZHQGMNR6v7m+11fZQoaAZoCWgPQwhjJ7wEp/4AwJSGlFKUaBVLMmgWR0BjNngrH2h7dX2UKGgGaAloD0MITOKsiJoIAMCUhpRSlGgVSzJoFkdAYzFLeQ+2VnV9lChoBmgJaA9DCNUEUfcBqAHAlIaUUpRoFUsyaBZHQGMr/wAlv611fZQoaAZoCWgPQwguxsA6jh/9v5SGlFKUaBVLMmgWR0BjJmryUcGUdX2UKGgGaAloD0MITOMXXkkSAcCUhpRSlGgVSzJoFkdAY0afzSThYXV9lChoBmgJaA9DCOuPMAxYEgDAlIaUUpRoFUsyaBZHQGNBc3uNPxh1fZQoaAZoCWgPQwhT51HxfycAwJSGlFKUaBVLMmgWR0BjPCjHn2ZidX2UKGgGaAloD0MI/G1PkNgOAcCUhpRSlGgVSzJoFkdAYzaXJo0yg3V9lChoBmgJaA9DCCEjoMIRJPu/lIaUUpRoFUsyaBZHQGNV6ScLBsR1fZQoaAZoCWgPQwifdCLBVBMAwJSGlFKUaBVLMmgWR0BjUL8R+SbIdX2UKGgGaAloD0MI0XZM3ZV9AsCUhpRSlGgVSzJoFkdAY0tx9XtBwHV9lChoBmgJaA9DCDEnaJPDJwTAlIaUUpRoFUsyaBZHQGNF2WpqASZ1fZQoaAZoCWgPQwg3UOCdfLoBwJSGlFKUaBVLMmgWR0BjZTnHNorXdX2UKGgGaAloD0MILEZda++T/r+UhpRSlGgVSzJoFkdAY2APdVNpNHV9lChoBmgJaA9DCIKOVrWkY/y/lIaUUpRoFUsyaBZHQGNaxA0Kqn51fZQoaAZoCWgPQwh2Gf7TDZQAwJSGlFKUaBVLMmgWR0BjVTFyaNModX2UKGgGaAloD0MIHEKVmj3Q/L+UhpRSlGgVSzJoFkdAY3QloDgZTHV9lChoBmgJaA9DCOXwSScS7ADAlIaUUpRoFUsyaBZHQGNu+H8CPp91fZQoaAZoCWgPQwhPstXllEABwJSGlFKUaBVLMmgWR0BjaasKb8WLdX2UKGgGaAloD0MItrsH6L5c/r+UhpRSlGgVSzJoFkdAY2QROk+HJ3V9lChoBmgJaA9DCBPzrKQVfwDAlIaUUpRoFUsyaBZHQGODGO2iL2p1fZQoaAZoCWgPQwjFjPD2IMQEwJSGlFKUaBVLMmgWR0BjfewiaAnVdX2UKGgGaAloD0MI4Ep2bASCAMCUhpRSlGgVSzJoFkdAY3inTAnDznV9lChoBmgJaA9DCNWxSumZ/gDAlIaUUpRoFUsyaBZHQGNzFaSs8xN1fZQoaAZoCWgPQwjG+3H75TMAwJSGlFKUaBVLMmgWR0BjkjyxzJZGdX2UKGgGaAloD0MIqmVrfZFwAsCUhpRSlGgVSzJoFkdAY40Np/PPcHV9lChoBmgJaA9DCJCiztxD4gDAlIaUUpRoFUsyaBZHQGOHww0wait1fZQoaAZoCWgPQwgbZ9MRwM3/v5SGlFKUaBVLMmgWR0Bjgisp5NXYdX2UKGgGaAloD0MIfc1y2eic/r+UhpRSlGgVSzJoFkdAY6EsYEW69XV9lChoBmgJaA9DCDnv/+OEyfy/lIaUUpRoFUsyaBZHQGOb/0NBnjB1fZQoaAZoCWgPQwj8VuvE5Xj9v5SGlFKUaBVLMmgWR0BjlrLZBcAzdX2UKGgGaAloD0MIiKBq9GpAAsCUhpRSlGgVSzJoFkdAY5Ee+23KCHV9lChoBmgJaA9DCCz0wTI2tP6/lIaUUpRoFUsyaBZHQGOwm65Gz8h1fZQoaAZoCWgPQwgFw7mGGdr/v5SGlFKUaBVLMmgWR0Bjq3TXrdFfdX2UKGgGaAloD0MIINPaNLaX/L+UhpRSlGgVSzJoFkdAY6YqWkadc3V9lChoBmgJaA9DCKirOxbbpPu/lIaUUpRoFUsyaBZHQGOgksJ6Y3N1fZQoaAZoCWgPQwh7TKQ0mwf9v5SGlFKUaBVLMmgWR0Bjv4f4h2W6dX2UKGgGaAloD0MIbqZCPBKv+r+UhpRSlGgVSzJoFkdAY7pZyMkyDnV9lChoBmgJaA9DCKXXZmMlJv+/lIaUUpRoFUsyaBZHQGO1DHwPRRd1fZQoaAZoCWgPQwhaSSu+oXACwJSGlFKUaBVLMmgWR0Bjr3RZ2ZAqdX2UKGgGaAloD0MI6X+5Fi0AAMCUhpRSlGgVSzJoFkdAY89O4XoC+3V9lChoBmgJaA9DCHS1FfvLLv2/lIaUUpRoFUsyaBZHQGPKIRRMvh91fZQoaAZoCWgPQwhSgCiYMUX8v5SGlFKUaBVLMmgWR0BjxNPci4axdX2UKGgGaAloD0MIH4XrUbje/L+UhpRSlGgVSzJoFkdAY789Mbm2cHV9lChoBmgJaA9DCFjKMsSxbgDAlIaUUpRoFUsyaBZHQGPeUQCjk+51fZQoaAZoCWgPQwi7nBIQkzD7v5SGlFKUaBVLMmgWR0Bj2SUJOWSmdX2UKGgGaAloD0MIP+PCgZAs/7+UhpRSlGgVSzJoFkdAY9PXyy2QXHV9lChoBmgJaA9DCP1reeV62/2/lIaUUpRoFUsyaBZHQGPOQA+6iCd1fZQoaAZoCWgPQwg6dlCJ61j6v5SGlFKUaBVLMmgWR0Bj7e2G7BfsdX2UKGgGaAloD0MIMKAX7lxY/L+UhpRSlGgVSzJoFkdAY+jCrtE5Q3V9lChoBmgJaA9DCI18XvHUAwHAlIaUUpRoFUsyaBZHQGPjeKCQLeB1fZQoaAZoCWgPQwjEsS5uoyECwJSGlFKUaBVLMmgWR0Bj3eARTS9edX2UKGgGaAloD0MIb2dfeZDe/7+UhpRSlGgVSzJoFkdAY/48kleF+XV9lChoBmgJaA9DCOI5W0BoPf+/lIaUUpRoFUsyaBZHQGP5Dye7L+x1fZQoaAZoCWgPQwg/NV66ScwAwJSGlFKUaBVLMmgWR0Bj88N6PbPAdX2UKGgGaAloD0MIlX7C2a3l/b+UhpRSlGgVSzJoFkdAY+4tMfzSTnV9lChoBmgJaA9DCKmgoupX+v+/lIaUUpRoFUsyaBZHQGQNzqrzXjF1fZQoaAZoCWgPQwgSMpBnly/7v5SGlFKUaBVLMmgWR0BkCKGlANXpdX2UKGgGaAloD0MIfbPNjemJ/L+UhpRSlGgVSzJoFkdAZANUT+NtInV9lChoBmgJaA9DCL76eOi7m/u/lIaUUpRoFUsyaBZHQGP9uwPiDNB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2500, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (775 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.4039787600748241, "std_reward": 0.2353407270359583, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-04T00:10:26.056847"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b442218eb84ff169739dec8c3757f625305fcbe59d46d7ababe8e1946da3a3cb
3
+ size 3056