miguel6nunes
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -33,43 +33,48 @@ widget:
|
|
33 |
example_title: Example 5
|
34 |
- text: Monitorização da Freq. cardíaca com 90 bpm. P Arterial de 120-80 mmHg
|
35 |
example_title: Example 6
|
36 |
-
- text: A ressonância magnética da utente revelou uma
|
37 |
example_title: Example 7
|
38 |
- text: A paciente foi diagnosticada com esclerose múltipla e iniciou terapia com imunomoduladores.
|
|
|
39 |
---
|
40 |
|
41 |
# MediAlbertina
|
42 |
-
The first publicly available medical language
|
43 |
|
44 |
MediAlbertina is a family of encoders from the Bert family, DeBERTaV2-based, resulting from the continuation of the pre-training of [PORTULAN's Albertina](https://huggingface.co/PORTULAN) models with Electronic Medical Records shared by Portugal's largest public hospital.
|
45 |
|
46 |
-
Like its antecessors, MediAlbertina models are distributed under the [MIT license](https://huggingface.co/portugueseNLP/medialbertina_pt-
|
47 |
|
48 |
|
49 |
|
50 |
# Model Description
|
51 |
|
52 |
-
MediAlbertina PT-PT 900M NER was created through fine-tuning of [MediAlbertina PT-PT 900M](https://huggingface.co/portugueseNLP/medialbertina_pt-pt_900m) on real European Portuguese EMRs that have been hand-annotated for the following entities:
|
53 |
-
- Diagnostico
|
54 |
-
- Sintoma
|
55 |
-
- Medicamento
|
56 |
-
- Dosagem
|
57 |
-
- ProcedimentoMedico
|
58 |
-
- SinalVital
|
59 |
-
- Resultado
|
60 |
-
- Progresso
|
61 |
|
62 |
-
MediAlbertina PT-PT 900M NER achieved superior results to the same adaptation made on a non-medical Portuguese language model, demonstrating the effectiveness of this domain adaptation, and its potential for medical AI in Portugal.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
| Model | NER single-model | NER multi-models | Assertion Status |
|
65 |
-
|-------------------------|:----------------:|:----------------:|:----------------:|
|
66 |
-
| | F1-score | F1-score | F1-score |
|
67 |
-
|albertina-900m-portuguese-ptpt-encoder | 0.813 | 0.811 | 0.687 |
|
68 |
-
| **medialbertina_pt-pt_900m** | **0.832** | **0.848** | **0.755** |
|
69 |
|
70 |
## Data
|
71 |
|
72 |
-
MediAlbertina PT-PT 900M NER was fine-tuned on
|
73 |
|
74 |
|
75 |
## How to use
|
@@ -77,11 +82,11 @@ MediAlbertina PT-PT 900M NER was fine-tuned on more than 10k hand-annotated enti
|
|
77 |
```Python
|
78 |
from transformers import pipeline
|
79 |
|
80 |
-
ner_pipeline = pipeline('ner', model='portugueseNLP/medialbertina_pt-
|
81 |
sentence = 'Durante o procedimento endoscópico, foram encontrados pólipos no cólon do paciente.'
|
82 |
entities = ner_pipeline(sentence)
|
83 |
for entity in entities:
|
84 |
-
|
85 |
```
|
86 |
|
87 |
## Citation
|
@@ -91,4 +96,4 @@ MediAlbertina is developed by a joint team from [ISCTE-IUL](https://www.iscte-iu
|
|
91 |
```latex
|
92 |
In publishing process. Reference will be added soon.
|
93 |
```
|
94 |
-
Please use the above cannonical reference when using or citing this model.
|
|
|
33 |
example_title: Example 5
|
34 |
- text: Monitorização da Freq. cardíaca com 90 bpm. P Arterial de 120-80 mmHg
|
35 |
example_title: Example 6
|
36 |
+
- text: A ressonância magnética da utente revelou uma rotura no menisco lateral do joelho.
|
37 |
example_title: Example 7
|
38 |
- text: A paciente foi diagnosticada com esclerose múltipla e iniciou terapia com imunomoduladores.
|
39 |
+
example_title: Example 8
|
40 |
---
|
41 |
|
42 |
# MediAlbertina
|
43 |
+
The first publicly available medical language model trained with real European Portuguese data.
|
44 |
|
45 |
MediAlbertina is a family of encoders from the Bert family, DeBERTaV2-based, resulting from the continuation of the pre-training of [PORTULAN's Albertina](https://huggingface.co/PORTULAN) models with Electronic Medical Records shared by Portugal's largest public hospital.
|
46 |
|
47 |
+
Like its antecessors, MediAlbertina models are distributed under the [MIT license](https://huggingface.co/portugueseNLP/medialbertina_pt-pt_900m_NER_all/blob/main/LICENSE).
|
48 |
|
49 |
|
50 |
|
51 |
# Model Description
|
52 |
|
53 |
+
**MediAlbertina PT-PT 900M NER all** was created through fine-tuning of [MediAlbertina PT-PT 900M](https://huggingface.co/portugueseNLP/medialbertina_pt-pt_900m) on real European Portuguese EMRs that have been hand-annotated for the following entities:
|
54 |
+
- **Diagnostico (D)**: All types of diseases and conditions following the ICD-10-CM guidelines.
|
55 |
+
- **Sintoma (S)**: Any complaints or evidence from healthcare professionals indicating that a patient is experiencing a medical condition.
|
56 |
+
- **Medicamento (M)**: Something that is administrated to the patient (through any route), including drugs, specific food/drink, vitamins, or blood for transfusion.
|
57 |
+
- **Dosagem (D)**: Dosage and frequency of medication administration.
|
58 |
+
- **ProcedimentoMedico (PM)**: Anything healthcare professionals do related to patients, including exams, moving patients, administering something, or even surgeries.
|
59 |
+
- **SinalVital (SV)**: Quantifiable indicators in a patient that can be measured, always associated with a specific result. Examples include cholesterol levels, diuresis, weight, or glycaemia.
|
60 |
+
- **Resultado (R)**: Results can be associated with Medical Procedures and Vital Signs. It can be a numerical value if something was measured (e.g., the value associated with blood pressure) or a descriptor to indicate the result (e.g., positive/negative, functional).
|
61 |
+
- **Progresso (P)**: Describes the progress of patient’s condition. Typically, it includes verbs like improving, evolving, or regressing and mentions to patient’s stability.
|
62 |
|
63 |
+
MediAlbertina PT-PT 900M NER all achieved superior results to the same adaptation made on a non-medical Portuguese language model, demonstrating the effectiveness of this domain adaptation, and its potential for medical AI in Portugal.
|
64 |
+
|
65 |
+
| Model | B-D | I-D | B-S | I-S | B-PM | I-PM | B-SV | I-SV | B-R | I-R | B-M | I-M | B-DO | I-DO | B-P | I-P |
|
66 |
+
|-------------------------|:----:|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
67 |
+
| | F1 | F1 | F1 | F1 | F1 | F1 | F1 | F1 | F1 | F1 | F1 | F1 | F1 | F1 | F1 | F1 |
|
68 |
+
| albertina-900m-portuguese-ptpt-encoder|0.721|0.786|0.734|0.775|0.737|0.805|0.859|0.811|0.803|0.816|0.913|0.871|**0.853**|**0.895**|0.769|0.785|
|
69 |
+
| **medialbertina_pt-pt_900m** | **0.799**| **0.832**| **0.754**| **0.782**| **0.786**| **0.813**| **0.916**| **0.788**| **0.821**| **0.83**| **0.926**| **0.895**|0.85|0.885| **0.779**| **0.807**|
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
## Data
|
76 |
|
77 |
+
**MediAlbertina PT-PT 900M NER all** was fine-tuned on about 10k hand-annotated medical entities from about 4k fully anonymized medical sentences from Portugal's largest public hospital. This data was acquired under the framework of the [FCT project DSAIPA/AI/0122/2020 AIMHealth-Mobile Applications Based on Artificial Intelligence](https://ciencia.iscte-iul.pt/projects/aplicacoes-moveis-baseadas-em-inteligencia-artificial-para-resposta-de-saude-publica/1567).
|
78 |
|
79 |
|
80 |
## How to use
|
|
|
82 |
```Python
|
83 |
from transformers import pipeline
|
84 |
|
85 |
+
ner_pipeline = pipeline('ner', model='portugueseNLP/medialbertina_pt-pt_900m_NER_all', aggregation_strategy='average')
|
86 |
sentence = 'Durante o procedimento endoscópico, foram encontrados pólipos no cólon do paciente.'
|
87 |
entities = ner_pipeline(sentence)
|
88 |
for entity in entities:
|
89 |
+
print(f"{entity['entity_group']} - {sentence[entity['start']:entity['end']]}")
|
90 |
```
|
91 |
|
92 |
## Citation
|
|
|
96 |
```latex
|
97 |
In publishing process. Reference will be added soon.
|
98 |
```
|
99 |
+
Please use the above cannonical reference when using or citing this model.
|