File size: 2,095 Bytes
1daf5fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
library_name: transformers
license: llama3.2
base_model: meta-llama/Llama-3.2-1B
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: defect-classification-llama-baseline-10-epochs
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# defect-classification-llama-baseline-10-epochs
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2633
- Accuracy: 0.9165
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 512
- eval_batch_size: 512
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.8939 | 1.0 | 1062 | 0.8390 | 0.8097 |
| 0.5659 | 2.0 | 2124 | 0.5772 | 0.8416 |
| 0.4494 | 3.0 | 3186 | 0.5062 | 0.8610 |
| 0.3925 | 4.0 | 4248 | 0.4691 | 0.8758 |
| 0.3508 | 5.0 | 5310 | 0.3363 | 0.8998 |
| 0.3107 | 6.0 | 6372 | 0.3099 | 0.9026 |
| 0.2938 | 7.0 | 7434 | 0.2935 | 0.9087 |
| 0.2864 | 8.0 | 8496 | 0.2787 | 0.9124 |
| 0.2675 | 9.0 | 9558 | 0.2777 | 0.9105 |
| 0.2673 | 10.0 | 10620 | 0.2633 | 0.9165 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|