File size: 1,979 Bytes
0951ac0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: mpnet-adaptation_mitigation-classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mpnet-adaptation_mitigation-classifier
This model is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2117
- Precision Micro: 0.9175
- Precision Weighted: 0.9181
- Precision Samples: 0.9256
- Recall Micro: 0.9281
- Recall Weighted: 0.9281
- Recall Samples: 0.9314
- F1-score: 0.9263
- Accuracy: 0.9082
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision Micro | Precision Weighted | Precision Samples | Recall Micro | Recall Weighted | Recall Samples | F1-score | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------------:|:-----------------:|:------------:|:---------------:|:--------------:|:--------:|:--------:|
| 0.3291 | 1.0 | 1051 | 0.2117 | 0.9175 | 0.9181 | 0.9256 | 0.9281 | 0.9281 | 0.9314 | 0.9263 | 0.9082 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
|