VarunGumma
commited on
Commit
•
ac9bc69
1
Parent(s):
982d3d4
Upload 2 files
Browse files- configuration_rotary_indictrans.py +2 -175
- modeling_rotary_indictrans.py +93 -233
configuration_rotary_indictrans.py
CHANGED
@@ -1,28 +1,4 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2023 The IndicTrans2 Authors and AI4Bharat team. All rights reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
""" PyTorch IndicTrans config."""
|
16 |
-
|
17 |
-
import json
|
18 |
-
from collections import OrderedDict
|
19 |
-
from typing import Any, Mapping, Optional
|
20 |
-
|
21 |
-
from transformers import PreTrainedTokenizer
|
22 |
from transformers.configuration_utils import PretrainedConfig
|
23 |
-
from transformers.onnx import OnnxConfig, OnnxSeq2SeqConfigWithPast
|
24 |
-
from transformers.onnx.utils import compute_effective_axis_dimension
|
25 |
-
from transformers.utils import TensorType, is_torch_available
|
26 |
|
27 |
|
28 |
# Copied from transformers.models.m2m_100.configuration_m2m_100.M2M100Config->IndicTrans
|
@@ -79,6 +55,7 @@ class RotaryIndicTransConfig(PretrainedConfig):
|
|
79 |
use_cache (`bool`, *optional*, defaults to `True`):
|
80 |
Whether or not the model should return the last key/values attentions (not used by all models).
|
81 |
```"""
|
|
|
82 |
model_type = "RotaryIndicTrans"
|
83 |
keys_to_ignore_at_inference = ["past_key_values"]
|
84 |
attribute_map = {
|
@@ -146,7 +123,7 @@ class RotaryIndicTransConfig(PretrainedConfig):
|
|
146 |
self.scale_embedding = scale_embedding
|
147 |
self.share_decoder_input_output_embed = share_decoder_input_output_embed
|
148 |
self.attn_implementation = attn_implementation
|
149 |
-
|
150 |
super().__init__(
|
151 |
pad_token_id=pad_token_id,
|
152 |
bos_token_id=bos_token_id,
|
@@ -155,153 +132,3 @@ class RotaryIndicTransConfig(PretrainedConfig):
|
|
155 |
decoder_start_token_id=decoder_start_token_id,
|
156 |
**kwargs,
|
157 |
)
|
158 |
-
|
159 |
-
|
160 |
-
class RotaryIndicTransOnnxConfig(OnnxSeq2SeqConfigWithPast):
|
161 |
-
@property
|
162 |
-
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
163 |
-
common_inputs = OrderedDict(
|
164 |
-
[
|
165 |
-
("input_ids", {0: "batch", 1: "encoder_sequence"}),
|
166 |
-
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
|
167 |
-
]
|
168 |
-
)
|
169 |
-
|
170 |
-
if self.use_past:
|
171 |
-
common_inputs["decoder_input_ids"] = {0: "batch"}
|
172 |
-
common_inputs["decoder_attention_mask"] = {
|
173 |
-
0: "batch",
|
174 |
-
1: "past_decoder_sequence + sequence",
|
175 |
-
}
|
176 |
-
else:
|
177 |
-
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
|
178 |
-
common_inputs["decoder_attention_mask"] = {
|
179 |
-
0: "batch",
|
180 |
-
1: "decoder_sequence",
|
181 |
-
}
|
182 |
-
|
183 |
-
if self.use_past:
|
184 |
-
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
185 |
-
return common_inputs
|
186 |
-
|
187 |
-
# Copied from BartOnnxConfig._generate_dummy_inputs_for_sequence_classification_and_question_answering
|
188 |
-
# A better name would be _generate_dummy_inputs_for_encoder_and_decoder because sequence classification and question
|
189 |
-
# answering are not supported for IT2, but this name is preserved to be able to check that the copy matches what
|
190 |
-
# was done for BART so that it can be updated if need be.
|
191 |
-
def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
192 |
-
self,
|
193 |
-
tokenizer: PreTrainedTokenizer,
|
194 |
-
batch_size: int = -1,
|
195 |
-
seq_length: int = -1,
|
196 |
-
is_pair: bool = False,
|
197 |
-
framework: Optional[TensorType] = None,
|
198 |
-
) -> Mapping[str, Any]:
|
199 |
-
# Copied from OnnxConfig.generate_dummy_inputs
|
200 |
-
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
|
201 |
-
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
|
202 |
-
batch_size = compute_effective_axis_dimension(
|
203 |
-
batch_size,
|
204 |
-
fixed_dimension=OnnxConfig.default_fixed_batch,
|
205 |
-
num_token_to_add=0,
|
206 |
-
)
|
207 |
-
|
208 |
-
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
|
209 |
-
token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
|
210 |
-
seq_length = compute_effective_axis_dimension(
|
211 |
-
seq_length,
|
212 |
-
fixed_dimension=OnnxConfig.default_fixed_sequence,
|
213 |
-
num_token_to_add=token_to_add,
|
214 |
-
)
|
215 |
-
|
216 |
-
# Generate dummy inputs according to compute batch and sequence
|
217 |
-
dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
|
218 |
-
common_inputs = dict(tokenizer(dummy_input, return_tensors=framework))
|
219 |
-
return common_inputs
|
220 |
-
|
221 |
-
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig._generate_dummy_inputs_for_default_and_seq2seq_lm
|
222 |
-
def _generate_dummy_inputs_for_default_and_seq2seq_lm(
|
223 |
-
self,
|
224 |
-
tokenizer: PreTrainedTokenizer,
|
225 |
-
batch_size: int = -1,
|
226 |
-
seq_length: int = -1,
|
227 |
-
is_pair: bool = False,
|
228 |
-
framework: Optional[TensorType] = None,
|
229 |
-
) -> Mapping[str, Any]:
|
230 |
-
encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
231 |
-
tokenizer, batch_size, seq_length, is_pair, framework
|
232 |
-
)
|
233 |
-
|
234 |
-
# Generate decoder inputs
|
235 |
-
decoder_seq_length = seq_length if not self.use_past else 1
|
236 |
-
decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
237 |
-
tokenizer, batch_size, decoder_seq_length, is_pair, framework
|
238 |
-
)
|
239 |
-
decoder_inputs = {
|
240 |
-
f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()
|
241 |
-
}
|
242 |
-
common_inputs = dict(**encoder_inputs, **decoder_inputs)
|
243 |
-
|
244 |
-
if self.use_past:
|
245 |
-
if not is_torch_available():
|
246 |
-
raise ValueError(
|
247 |
-
"Cannot generate dummy past_keys inputs without PyTorch installed."
|
248 |
-
)
|
249 |
-
else:
|
250 |
-
import torch
|
251 |
-
batch, encoder_seq_length = common_inputs["input_ids"].shape
|
252 |
-
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
|
253 |
-
(
|
254 |
-
num_encoder_attention_heads,
|
255 |
-
num_decoder_attention_heads,
|
256 |
-
) = self.num_attention_heads
|
257 |
-
encoder_shape = (
|
258 |
-
batch,
|
259 |
-
num_encoder_attention_heads,
|
260 |
-
encoder_seq_length,
|
261 |
-
self._config.hidden_size // num_encoder_attention_heads,
|
262 |
-
)
|
263 |
-
decoder_past_length = decoder_seq_length + 3
|
264 |
-
decoder_shape = (
|
265 |
-
batch,
|
266 |
-
num_decoder_attention_heads,
|
267 |
-
decoder_past_length,
|
268 |
-
self._config.hidden_size // num_decoder_attention_heads,
|
269 |
-
)
|
270 |
-
|
271 |
-
common_inputs["decoder_attention_mask"] = torch.cat(
|
272 |
-
[
|
273 |
-
common_inputs["decoder_attention_mask"],
|
274 |
-
torch.ones(batch, decoder_past_length),
|
275 |
-
],
|
276 |
-
dim=1,
|
277 |
-
)
|
278 |
-
|
279 |
-
common_inputs["past_key_values"] = []
|
280 |
-
# If the number of encoder and decoder layers are present in the model configuration, both are considered
|
281 |
-
num_encoder_layers, num_decoder_layers = self.num_layers
|
282 |
-
min_num_layers = min(num_encoder_layers, num_decoder_layers)
|
283 |
-
max_num_layers = (
|
284 |
-
max(num_encoder_layers, num_decoder_layers) - min_num_layers
|
285 |
-
)
|
286 |
-
remaining_side_name = (
|
287 |
-
"encoder" if num_encoder_layers > num_decoder_layers else "decoder"
|
288 |
-
)
|
289 |
-
|
290 |
-
for _ in range(min_num_layers):
|
291 |
-
common_inputs["past_key_values"].append(
|
292 |
-
(
|
293 |
-
torch.zeros(decoder_shape),
|
294 |
-
torch.zeros(decoder_shape),
|
295 |
-
torch.zeros(encoder_shape),
|
296 |
-
torch.zeros(encoder_shape),
|
297 |
-
)
|
298 |
-
)
|
299 |
-
# TODO: test this.
|
300 |
-
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
|
301 |
-
for _ in range(min_num_layers, max_num_layers):
|
302 |
-
common_inputs["past_key_values"].append(
|
303 |
-
(torch.zeros(shape), torch.zeros(shape))
|
304 |
-
)
|
305 |
-
return common_inputs
|
306 |
-
|
307 |
-
generate_dummy_inputs = _generate_dummy_inputs_for_default_and_seq2seq_lm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from transformers.configuration_utils import PretrainedConfig
|
|
|
|
|
|
|
2 |
|
3 |
|
4 |
# Copied from transformers.models.m2m_100.configuration_m2m_100.M2M100Config->IndicTrans
|
|
|
55 |
use_cache (`bool`, *optional*, defaults to `True`):
|
56 |
Whether or not the model should return the last key/values attentions (not used by all models).
|
57 |
```"""
|
58 |
+
|
59 |
model_type = "RotaryIndicTrans"
|
60 |
keys_to_ignore_at_inference = ["past_key_values"]
|
61 |
attribute_map = {
|
|
|
123 |
self.scale_embedding = scale_embedding
|
124 |
self.share_decoder_input_output_embed = share_decoder_input_output_embed
|
125 |
self.attn_implementation = attn_implementation
|
126 |
+
|
127 |
super().__init__(
|
128 |
pad_token_id=pad_token_id,
|
129 |
bos_token_id=bos_token_id,
|
|
|
132 |
decoder_start_token_id=decoder_start_token_id,
|
133 |
**kwargs,
|
134 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modeling_rotary_indictrans.py
CHANGED
@@ -1,20 +1,3 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2023 The RotaryIndicTrans2 Authors and AI4Bharat team. All rights reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
""" PyTorch RotaryIndicTrans model."""
|
16 |
-
|
17 |
-
|
18 |
import math
|
19 |
from typing import List, Optional, Tuple, Union
|
20 |
|
@@ -38,36 +21,24 @@ from transformers.modeling_outputs import (
|
|
38 |
Seq2SeqModelOutput,
|
39 |
)
|
40 |
|
41 |
-
from transformers.utils import
|
42 |
-
|
43 |
-
is_flash_attn_2_available,
|
44 |
-
is_flash_attn_greater_or_equal_2_10,
|
45 |
-
)
|
46 |
|
47 |
-
from
|
48 |
-
from
|
49 |
-
from .configuration_rotary_indictrans import RotaryIndicTransConfig
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
except ImportError:
|
54 |
-
raise ImportError("Please install the rotary-embedding-torch>=0.6.4")
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
logger = logging.get_logger(__name__)
|
58 |
-
|
59 |
-
ROTARY_INDICTRANS_PRETRAINED_MODEL_ARCHIVE_LIST = [""]
|
60 |
-
|
61 |
-
try:
|
62 |
-
if is_flash_attn_2_available():
|
63 |
-
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
64 |
-
from flash_attn.bert_padding import (
|
65 |
-
index_first_axis,
|
66 |
-
pad_input,
|
67 |
-
unpad_input,
|
68 |
-
) # noqa
|
69 |
-
except:
|
70 |
-
pass
|
71 |
|
72 |
|
73 |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
@@ -87,29 +58,20 @@ def _get_unpad_data(attention_mask):
|
|
87 |
def shift_tokens_right(
|
88 |
input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int
|
89 |
):
|
90 |
-
"""
|
91 |
-
Shift input ids one token to the right.
|
92 |
-
"""
|
93 |
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
94 |
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
|
95 |
shifted_input_ids[:, 0] = decoder_start_token_id
|
96 |
|
97 |
if pad_token_id is None:
|
98 |
raise ValueError("self.model.config.pad_token_id has to be defined.")
|
99 |
-
# replace possible -100 values in labels by `pad_token_id`
|
100 |
-
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
101 |
|
|
|
102 |
return shifted_input_ids
|
103 |
|
104 |
|
105 |
def create_position_ids_from_input_ids(
|
106 |
input_ids, padding_idx, past_key_values_length=0
|
107 |
):
|
108 |
-
"""
|
109 |
-
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
110 |
-
are ignored. This is modified from fairseq's `utils.make_positions`.
|
111 |
-
"""
|
112 |
-
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
113 |
mask = input_ids.ne(padding_idx).int()
|
114 |
incremental_indices = (
|
115 |
torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length
|
@@ -117,10 +79,64 @@ def create_position_ids_from_input_ids(
|
|
117 |
return incremental_indices.long() + padding_idx
|
118 |
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->RotaryIndicTrans
|
121 |
class RotaryIndicTransAttention(nn.Module):
|
122 |
-
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
123 |
-
|
124 |
def __init__(
|
125 |
self,
|
126 |
embed_dim: int,
|
@@ -133,12 +149,11 @@ class RotaryIndicTransAttention(nn.Module):
|
|
133 |
config: Optional[RotaryIndicTransConfig] = None,
|
134 |
):
|
135 |
super().__init__()
|
|
|
136 |
self.embed_dim = embed_dim
|
137 |
self.num_heads = num_heads
|
138 |
self.dropout = dropout
|
139 |
self.head_dim = embed_dim // num_heads
|
140 |
-
self.config = config
|
141 |
-
self.rope_args = config.rope_args
|
142 |
|
143 |
if (self.head_dim * num_heads) != self.embed_dim:
|
144 |
raise ValueError(
|
@@ -149,15 +164,12 @@ class RotaryIndicTransAttention(nn.Module):
|
|
149 |
self.is_decoder = is_decoder
|
150 |
self.is_causal = is_causal
|
151 |
|
152 |
-
self.xpos = self.rope_args.get("use_xpos", False)
|
153 |
-
|
154 |
# partial rotation in RoPE
|
155 |
self.rotary_pos_embed = (
|
156 |
RotaryEmbedding(
|
157 |
dim=self.head_dim // 2,
|
158 |
-
|
159 |
-
|
160 |
-
xpos_scale_base=self.rope_args.get("xpos_scale_base", 512),
|
161 |
)
|
162 |
if not is_cross_attention
|
163 |
else None
|
@@ -179,14 +191,10 @@ class RotaryIndicTransAttention(nn.Module):
|
|
179 |
q = rearrange(q, "(b h) t d -> b h t d", h=self.num_heads)
|
180 |
k = rearrange(k, "(b h) t d -> b h t d", h=self.num_heads)
|
181 |
|
182 |
-
if is_inference
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
q = self.rotary_pos_embed.rotate_queries_or_keys(q)
|
187 |
-
k = self.rotary_pos_embed.rotate_queries_or_keys(k)
|
188 |
-
else:
|
189 |
-
q, k = self.rotary_pos_embed.rotate_queries_and_keys(q, k)
|
190 |
|
191 |
q = rearrange(q, "b h t d -> (b h) t d")
|
192 |
k = rearrange(k, "b h t d -> (b h) t d")
|
@@ -203,49 +211,32 @@ class RotaryIndicTransAttention(nn.Module):
|
|
203 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
204 |
"""Input shape: Batch x Time x Channel"""
|
205 |
|
206 |
-
# if key_value_states are provided this layer is used as a cross-attention layer
|
207 |
-
# for the decoder
|
208 |
is_cross_attention = key_value_states is not None
|
209 |
|
210 |
bsz, tgt_len, _ = hidden_states.size()
|
211 |
|
212 |
-
# get query proj
|
213 |
query_states = self.q_proj(hidden_states) * self.scaling
|
214 |
-
|
215 |
-
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
216 |
-
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
217 |
-
# the provided `key_value_states` to support prefix tuning
|
218 |
if (
|
219 |
is_cross_attention
|
220 |
and past_key_value is not None
|
221 |
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
222 |
):
|
223 |
-
# reuse k,v, cross_attentions
|
224 |
key_states = past_key_value[0]
|
225 |
value_states = past_key_value[1]
|
226 |
elif is_cross_attention:
|
227 |
-
# cross_attentions
|
228 |
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
229 |
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
230 |
elif past_key_value is not None:
|
231 |
-
# reuse k, v, self_attention
|
232 |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
233 |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
234 |
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
235 |
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
236 |
else:
|
237 |
-
# self_attention
|
238 |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
239 |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
240 |
|
241 |
if self.is_decoder:
|
242 |
-
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
243 |
-
# Further calls to cross_attention layer can then reuse all cross-attention
|
244 |
-
# key/value_states (first "if" case)
|
245 |
-
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
246 |
-
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
247 |
-
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
248 |
-
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
249 |
past_key_value = (key_states, value_states)
|
250 |
|
251 |
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
@@ -293,10 +284,6 @@ class RotaryIndicTransAttention(nn.Module):
|
|
293 |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
294 |
|
295 |
if output_attentions:
|
296 |
-
# this operation is a bit awkward, but it's required to
|
297 |
-
# make sure that attn_weights keeps its gradient.
|
298 |
-
# In order to do so, attn_weights have to be reshaped
|
299 |
-
# twice and have to be reused in the following
|
300 |
attn_weights_reshaped = attn_weights.view(
|
301 |
bsz, self.num_heads, tgt_len, src_len
|
302 |
)
|
@@ -316,34 +303,19 @@ class RotaryIndicTransAttention(nn.Module):
|
|
316 |
f" {attn_output.size()}"
|
317 |
)
|
318 |
|
319 |
-
attn_output =
|
320 |
-
|
321 |
-
|
322 |
-
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
323 |
-
# partitioned across GPUs when using tensor-parallelism.
|
324 |
-
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
325 |
|
326 |
attn_output = self.out_proj(attn_output)
|
327 |
-
|
328 |
return attn_output, attn_weights_reshaped, past_key_value
|
329 |
|
330 |
|
331 |
class RotaryIndicTransFlashAttention2(RotaryIndicTransAttention):
|
332 |
-
"""
|
333 |
-
RotaryIndicTrans flash attention module. This module inherits from `RotaryIndicTransAttention` as the weights of the module stays
|
334 |
-
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
335 |
-
flash attention and deal with padding tokens in case the input contains any of them.
|
336 |
-
"""
|
337 |
-
|
338 |
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
339 |
def __init__(self, *args, **kwargs):
|
340 |
super().__init__(*args, **kwargs)
|
341 |
|
342 |
-
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
343 |
-
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
344 |
-
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
345 |
-
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
346 |
-
|
347 |
def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
348 |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
|
349 |
|
@@ -362,32 +334,23 @@ class RotaryIndicTransFlashAttention2(RotaryIndicTransAttention):
|
|
362 |
"RotaryIndicTransFlashAttention2 attention does not support output_attentions"
|
363 |
)
|
364 |
|
365 |
-
# if key_value_states are provided this layer is used as a cross-attention layer
|
366 |
-
# for the decoder
|
367 |
is_cross_attention = key_value_states is not None
|
368 |
|
369 |
bsz, q_len, _ = hidden_states.size()
|
370 |
|
371 |
-
# get query proj
|
372 |
query_states = self._reshape(self.q_proj(hidden_states), -1, bsz)
|
373 |
-
|
374 |
-
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
375 |
-
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
376 |
-
# the provided `key_value_states` to support prefix tuning
|
377 |
if (
|
378 |
is_cross_attention
|
379 |
and past_key_value is not None
|
380 |
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
381 |
):
|
382 |
-
# reuse k,v, cross_attentions
|
383 |
key_states = past_key_value[0].transpose(1, 2)
|
384 |
value_states = past_key_value[1].transpose(1, 2)
|
385 |
elif is_cross_attention:
|
386 |
-
# cross_attentions
|
387 |
key_states = self._reshape(self.k_proj(key_value_states), -1, bsz)
|
388 |
value_states = self._reshape(self.v_proj(key_value_states), -1, bsz)
|
389 |
elif past_key_value is not None:
|
390 |
-
# reuse k, v, self_attention
|
391 |
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
|
392 |
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
|
393 |
key_states = torch.cat(
|
@@ -397,30 +360,16 @@ class RotaryIndicTransFlashAttention2(RotaryIndicTransAttention):
|
|
397 |
[past_key_value[1].transpose(1, 2), value_states], dim=1
|
398 |
)
|
399 |
else:
|
400 |
-
# self_attention
|
401 |
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
|
402 |
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
|
403 |
|
404 |
if self.is_decoder:
|
405 |
-
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
406 |
-
# Further calls to cross_attention layer can then reuse all cross-attention
|
407 |
-
# key/value_states (first "if" case)
|
408 |
-
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
409 |
-
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
410 |
-
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
411 |
-
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
412 |
past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2))
|
413 |
|
414 |
kv_seq_len = key_states.shape[-2]
|
415 |
if past_key_value is not None:
|
416 |
kv_seq_len += past_key_value[0].shape[-2]
|
417 |
|
418 |
-
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
419 |
-
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
420 |
-
# cast them back in the correct dtype just to be sure everything works as expected.
|
421 |
-
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
422 |
-
# in fp32. (LlamaRMSNorm handles it correctly)
|
423 |
-
|
424 |
input_dtype = query_states.dtype
|
425 |
if input_dtype == torch.float32:
|
426 |
if torch.is_autocast_enabled():
|
@@ -493,12 +442,6 @@ class RotaryIndicTransFlashAttention2(RotaryIndicTransAttention):
|
|
493 |
softmax_scale (`float`, *optional*):
|
494 |
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
495 |
"""
|
496 |
-
if not self._flash_attn_uses_top_left_mask:
|
497 |
-
causal = self.is_causal
|
498 |
-
else:
|
499 |
-
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
500 |
-
causal = self.is_causal and query_length != 1
|
501 |
-
|
502 |
# Contains at least one padding token in the sequence
|
503 |
if attention_mask is not None:
|
504 |
batch_size = query_states.shape[0]
|
@@ -526,7 +469,7 @@ class RotaryIndicTransFlashAttention2(RotaryIndicTransAttention):
|
|
526 |
max_seqlen_k=max_seqlen_in_batch_k,
|
527 |
dropout_p=dropout,
|
528 |
softmax_scale=softmax_scale,
|
529 |
-
causal=
|
530 |
)
|
531 |
|
532 |
attn_output = pad_input(
|
@@ -539,7 +482,7 @@ class RotaryIndicTransFlashAttention2(RotaryIndicTransAttention):
|
|
539 |
value_states,
|
540 |
dropout,
|
541 |
softmax_scale=softmax_scale,
|
542 |
-
causal=
|
543 |
)
|
544 |
|
545 |
return attn_output
|
@@ -571,11 +514,10 @@ class RotaryIndicTransFlashAttention2(RotaryIndicTransAttention):
|
|
571 |
max_seqlen_in_batch_q = 1
|
572 |
cu_seqlens_q = torch.arange(
|
573 |
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
574 |
-
)
|
575 |
indices_q = cu_seqlens_q[:-1]
|
576 |
query_layer = query_layer.squeeze(1)
|
577 |
else:
|
578 |
-
# The -q_len: slice assumes left padding.
|
579 |
attention_mask = attention_mask[:, -query_length:]
|
580 |
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
|
581 |
query_layer, attention_mask
|
@@ -603,7 +545,6 @@ class RotaryIndicTransSdpaAttention(RotaryIndicTransAttention):
|
|
603 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
604 |
"""Input shape: Batch x Time x Channel"""
|
605 |
if output_attentions or layer_head_mask is not None:
|
606 |
-
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented.
|
607 |
logger.warning_once(
|
608 |
"RotaryIndicTransModel is using RotaryIndicTransSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention"
|
609 |
' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
@@ -617,49 +558,32 @@ class RotaryIndicTransSdpaAttention(RotaryIndicTransAttention):
|
|
617 |
output_attentions=output_attentions,
|
618 |
)
|
619 |
|
620 |
-
# if key_value_states are provided this layer is used as a cross-attention layer
|
621 |
-
# for the decoder
|
622 |
is_cross_attention = key_value_states is not None
|
623 |
|
624 |
bsz, tgt_len, _ = hidden_states.size()
|
625 |
|
626 |
-
# get query proj
|
627 |
query_states = self.q_proj(hidden_states)
|
628 |
-
|
629 |
-
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
630 |
-
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
631 |
-
# the provided `key_value_states` to support prefix tuning
|
632 |
if (
|
633 |
is_cross_attention
|
634 |
and past_key_value is not None
|
635 |
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
636 |
):
|
637 |
-
# reuse k,v, cross_attentions
|
638 |
key_states = past_key_value[0]
|
639 |
value_states = past_key_value[1]
|
640 |
elif is_cross_attention:
|
641 |
-
# cross_attentions
|
642 |
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
643 |
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
644 |
elif past_key_value is not None:
|
645 |
-
# reuse k, v, self_attention
|
646 |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
647 |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
648 |
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
649 |
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
650 |
else:
|
651 |
-
# self_attention
|
652 |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
653 |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
654 |
|
655 |
if self.is_decoder:
|
656 |
-
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
657 |
-
# Further calls to cross_attention layer can then reuse all cross-attention
|
658 |
-
# key/value_states (first "if" case)
|
659 |
-
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
660 |
-
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
661 |
-
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
662 |
-
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
663 |
past_key_value = (key_states, value_states)
|
664 |
|
665 |
query_states = self._shape(query_states, tgt_len, bsz)
|
@@ -669,15 +593,12 @@ class RotaryIndicTransSdpaAttention(RotaryIndicTransAttention):
|
|
669 |
query_states, key_states, is_inference=past_key_value is not None
|
670 |
)
|
671 |
|
672 |
-
# NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask,
|
673 |
-
# but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577
|
674 |
attn_output = F.scaled_dot_product_attention(
|
675 |
query_states,
|
676 |
key_states,
|
677 |
value_states,
|
678 |
attn_mask=attention_mask,
|
679 |
dropout_p=self.dropout if self.training else 0.0,
|
680 |
-
# The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1.
|
681 |
is_causal=self.is_causal and attention_mask is None and tgt_len > 1,
|
682 |
)
|
683 |
|
@@ -687,14 +608,10 @@ class RotaryIndicTransSdpaAttention(RotaryIndicTransAttention):
|
|
687 |
f" {attn_output.size()}"
|
688 |
)
|
689 |
|
690 |
-
attn_output =
|
691 |
-
|
692 |
-
|
693 |
-
# partitioned across GPUs when using tensor-parallelism.
|
694 |
-
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
695 |
-
|
696 |
attn_output = self.out_proj(attn_output)
|
697 |
-
|
698 |
return attn_output, None, past_key_value
|
699 |
|
700 |
|
@@ -859,12 +776,10 @@ class RotaryIndicTransDecoderLayer(nn.Module):
|
|
859 |
if self.normalize_before:
|
860 |
hidden_states = self.self_attn_layer_norm(hidden_states)
|
861 |
|
862 |
-
# Self Attention
|
863 |
-
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
864 |
self_attn_past_key_value = (
|
865 |
past_key_value[:2] if past_key_value is not None else None
|
866 |
)
|
867 |
-
|
868 |
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
869 |
hidden_states=hidden_states,
|
870 |
past_key_value=self_attn_past_key_value,
|
@@ -877,7 +792,6 @@ class RotaryIndicTransDecoderLayer(nn.Module):
|
|
877 |
if not self.normalize_before:
|
878 |
hidden_states = self.self_attn_layer_norm(hidden_states)
|
879 |
|
880 |
-
# Cross-Attention Block
|
881 |
cross_attn_present_key_value = None
|
882 |
cross_attn_weights = None
|
883 |
if encoder_hidden_states is not None:
|
@@ -885,7 +799,6 @@ class RotaryIndicTransDecoderLayer(nn.Module):
|
|
885 |
if self.normalize_before:
|
886 |
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
887 |
|
888 |
-
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
|
889 |
cross_attn_past_key_value = (
|
890 |
past_key_value[-2:] if past_key_value is not None else None
|
891 |
)
|
@@ -908,10 +821,8 @@ class RotaryIndicTransDecoderLayer(nn.Module):
|
|
908 |
if not self.normalize_before:
|
909 |
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
910 |
|
911 |
-
# add cross-attn to positions 3,4 of present_key_value tuple
|
912 |
present_key_value = present_key_value + cross_attn_present_key_value
|
913 |
|
914 |
-
# Fully Connected
|
915 |
residual = hidden_states
|
916 |
if self.normalize_before:
|
917 |
hidden_states = self.final_layer_norm(hidden_states)
|
@@ -961,15 +872,6 @@ class RotaryIndicTransPreTrainedModel(PreTrainedModel):
|
|
961 |
|
962 |
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100EncoderLayer->RotaryIndicTrans
|
963 |
class RotaryIndicTransEncoder(RotaryIndicTransPreTrainedModel):
|
964 |
-
"""
|
965 |
-
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
|
966 |
-
[`RotaryIndicTransEncoderLayer`].
|
967 |
-
|
968 |
-
Args:
|
969 |
-
config: RotaryIndicTransConfig
|
970 |
-
embed_tokens (nn.Embedding): output embedding
|
971 |
-
"""
|
972 |
-
|
973 |
def __init__(
|
974 |
self,
|
975 |
config: RotaryIndicTransConfig,
|
@@ -1005,7 +907,6 @@ class RotaryIndicTransEncoder(RotaryIndicTransPreTrainedModel):
|
|
1005 |
self._use_sdpa = config._attn_implementation == "sdpa"
|
1006 |
|
1007 |
self.gradient_checkpointing = False
|
1008 |
-
# Initialize weights and apply final processing
|
1009 |
self.post_init()
|
1010 |
|
1011 |
def forward(
|
@@ -1068,7 +969,6 @@ class RotaryIndicTransEncoder(RotaryIndicTransPreTrainedModel):
|
|
1068 |
return_dict if return_dict is not None else self.config.use_return_dict
|
1069 |
)
|
1070 |
|
1071 |
-
# retrieve input_ids and inputs_embeds
|
1072 |
if input_ids is not None and inputs_embeds is not None:
|
1073 |
raise ValueError(
|
1074 |
"You cannot specify both input_ids and inputs_embeds at the same time"
|
@@ -1095,14 +995,10 @@ class RotaryIndicTransEncoder(RotaryIndicTransPreTrainedModel):
|
|
1095 |
if self._use_flash_attention_2:
|
1096 |
attention_mask = attention_mask if 0 in attention_mask else None
|
1097 |
elif self._use_sdpa and head_mask is None and not output_attentions:
|
1098 |
-
# output_attentions=True & head_mask can not be supported when using SDPA, fall back to
|
1099 |
-
# the manual implementation that requires a 4D causal mask in all cases.
|
1100 |
-
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1101 |
attention_mask = _prepare_4d_attention_mask_for_sdpa(
|
1102 |
attention_mask, inputs_embeds.dtype
|
1103 |
)
|
1104 |
else:
|
1105 |
-
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1106 |
attention_mask = _prepare_4d_attention_mask(
|
1107 |
attention_mask, inputs_embeds.dtype
|
1108 |
)
|
@@ -1110,7 +1006,6 @@ class RotaryIndicTransEncoder(RotaryIndicTransPreTrainedModel):
|
|
1110 |
encoder_states = () if output_hidden_states else None
|
1111 |
all_attentions = () if output_attentions else None
|
1112 |
|
1113 |
-
# check if head_mask has a correct number of layers specified if desired
|
1114 |
if head_mask is not None:
|
1115 |
if head_mask.size()[0] != len(self.layers):
|
1116 |
raise ValueError(
|
@@ -1123,7 +1018,6 @@ class RotaryIndicTransEncoder(RotaryIndicTransPreTrainedModel):
|
|
1123 |
if output_hidden_states:
|
1124 |
encoder_states = encoder_states + (hidden_states,)
|
1125 |
|
1126 |
-
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
1127 |
dropout_probability = torch.rand([])
|
1128 |
|
1129 |
skip_the_layer = (
|
@@ -1132,10 +1026,8 @@ class RotaryIndicTransEncoder(RotaryIndicTransPreTrainedModel):
|
|
1132 |
else False
|
1133 |
)
|
1134 |
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
1135 |
-
# under deepspeed zero3 all gpus must run in sync
|
1136 |
-
|
1137 |
if self.gradient_checkpointing and self.training:
|
1138 |
-
|
1139 |
def create_custom_forward(module):
|
1140 |
def custom_forward(*inputs):
|
1141 |
return module(*inputs, output_attentions)
|
@@ -1187,14 +1079,6 @@ class RotaryIndicTransEncoder(RotaryIndicTransPreTrainedModel):
|
|
1187 |
|
1188 |
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100DecoderLayer->RotaryIndicTrans
|
1189 |
class RotaryIndicTransDecoder(RotaryIndicTransPreTrainedModel):
|
1190 |
-
"""
|
1191 |
-
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`RotaryIndicTransDecoderLayer`]
|
1192 |
-
|
1193 |
-
Args:
|
1194 |
-
config: RotaryIndicTransConfig
|
1195 |
-
embed_tokens (nn.Embedding): output embedding
|
1196 |
-
"""
|
1197 |
-
|
1198 |
def __init__(
|
1199 |
self,
|
1200 |
config: RotaryIndicTransConfig,
|
@@ -1229,7 +1113,6 @@ class RotaryIndicTransDecoder(RotaryIndicTransPreTrainedModel):
|
|
1229 |
self._use_sdpa = config._attn_implementation == "sdpa"
|
1230 |
|
1231 |
self.gradient_checkpointing = False
|
1232 |
-
# Initialize weights and apply final processing
|
1233 |
self.post_init()
|
1234 |
|
1235 |
def forward(
|
@@ -1327,7 +1210,6 @@ class RotaryIndicTransDecoder(RotaryIndicTransPreTrainedModel):
|
|
1327 |
return_dict if return_dict is not None else self.config.use_return_dict
|
1328 |
)
|
1329 |
|
1330 |
-
# retrieve input_ids and inputs_embeds
|
1331 |
if input_ids is not None and inputs_embeds is not None:
|
1332 |
raise ValueError(
|
1333 |
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
|
@@ -1342,7 +1224,6 @@ class RotaryIndicTransDecoder(RotaryIndicTransPreTrainedModel):
|
|
1342 |
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
1343 |
)
|
1344 |
|
1345 |
-
# past_key_values_length
|
1346 |
past_key_values_length = (
|
1347 |
past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
1348 |
)
|
@@ -1351,15 +1232,12 @@ class RotaryIndicTransDecoder(RotaryIndicTransPreTrainedModel):
|
|
1351 |
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
1352 |
|
1353 |
if self._use_flash_attention_2:
|
1354 |
-
# 2d mask is passed through the layers
|
1355 |
attention_mask = (
|
1356 |
attention_mask
|
1357 |
if (attention_mask is not None and 0 in attention_mask)
|
1358 |
else None
|
1359 |
)
|
1360 |
elif self._use_sdpa and not output_attentions and cross_attn_head_mask is None:
|
1361 |
-
# output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
|
1362 |
-
# the manual implementation that requires a 4D causal mask in all cases.
|
1363 |
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
1364 |
attention_mask,
|
1365 |
input_shape,
|
@@ -1367,12 +1245,10 @@ class RotaryIndicTransDecoder(RotaryIndicTransPreTrainedModel):
|
|
1367 |
past_key_values_length,
|
1368 |
)
|
1369 |
else:
|
1370 |
-
# 4d mask is passed through the layers
|
1371 |
attention_mask = _prepare_4d_causal_attention_mask(
|
1372 |
attention_mask, input_shape, inputs_embeds, past_key_values_length
|
1373 |
)
|
1374 |
|
1375 |
-
# expand encoder attention mask
|
1376 |
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
1377 |
if self._use_flash_attention_2:
|
1378 |
encoder_attention_mask = (
|
@@ -1383,16 +1259,12 @@ class RotaryIndicTransDecoder(RotaryIndicTransPreTrainedModel):
|
|
1383 |
and cross_attn_head_mask is None
|
1384 |
and not output_attentions
|
1385 |
):
|
1386 |
-
# output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
|
1387 |
-
# the manual implementation that requires a 4D causal mask in all cases.
|
1388 |
-
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1389 |
encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
|
1390 |
encoder_attention_mask,
|
1391 |
inputs_embeds.dtype,
|
1392 |
tgt_len=input_shape[-1],
|
1393 |
)
|
1394 |
else:
|
1395 |
-
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1396 |
encoder_attention_mask = _prepare_4d_attention_mask(
|
1397 |
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
1398 |
)
|
@@ -1412,13 +1284,11 @@ class RotaryIndicTransDecoder(RotaryIndicTransPreTrainedModel):
|
|
1412 |
)
|
1413 |
use_cache = False
|
1414 |
|
1415 |
-
# decoder layers
|
1416 |
all_hidden_states = () if output_hidden_states else None
|
1417 |
all_self_attns = () if output_attentions else None
|
1418 |
all_cross_attentions = () if output_attentions else None
|
1419 |
next_decoder_cache = () if use_cache else None
|
1420 |
|
1421 |
-
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
|
1422 |
for attn_mask, mask_name in zip(
|
1423 |
[head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]
|
1424 |
):
|
@@ -1434,7 +1304,6 @@ class RotaryIndicTransDecoder(RotaryIndicTransPreTrainedModel):
|
|
1434 |
if output_hidden_states:
|
1435 |
all_hidden_states += (hidden_states,)
|
1436 |
|
1437 |
-
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
1438 |
dropout_probability = torch.rand([])
|
1439 |
|
1440 |
skip_the_layer = (
|
@@ -1443,8 +1312,6 @@ class RotaryIndicTransDecoder(RotaryIndicTransPreTrainedModel):
|
|
1443 |
else False
|
1444 |
)
|
1445 |
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
1446 |
-
# under deepspeed zero3 all gpus must run in sync
|
1447 |
-
|
1448 |
past_key_value = (
|
1449 |
past_key_values[idx] if past_key_values is not None else None
|
1450 |
)
|
@@ -1506,7 +1373,6 @@ class RotaryIndicTransDecoder(RotaryIndicTransPreTrainedModel):
|
|
1506 |
if self.layer_norm is not None:
|
1507 |
hidden_states = self.layer_norm(hidden_states)
|
1508 |
|
1509 |
-
# add hidden states from the last decoder layer
|
1510 |
if output_hidden_states:
|
1511 |
all_hidden_states += (hidden_states,)
|
1512 |
|
@@ -1541,8 +1407,6 @@ class RotaryIndicTransModel(RotaryIndicTransPreTrainedModel):
|
|
1541 |
|
1542 |
self.encoder = RotaryIndicTransEncoder(config)
|
1543 |
self.decoder = RotaryIndicTransDecoder(config)
|
1544 |
-
|
1545 |
-
# Initialize weights and apply final processing
|
1546 |
self.post_init()
|
1547 |
|
1548 |
def get_encoder(self):
|
@@ -1594,7 +1458,6 @@ class RotaryIndicTransModel(RotaryIndicTransPreTrainedModel):
|
|
1594 |
output_hidden_states=output_hidden_states,
|
1595 |
return_dict=return_dict,
|
1596 |
)
|
1597 |
-
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
|
1598 |
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
1599 |
encoder_outputs = BaseModelOutput(
|
1600 |
last_hidden_state=encoder_outputs[0],
|
@@ -1602,7 +1465,6 @@ class RotaryIndicTransModel(RotaryIndicTransPreTrainedModel):
|
|
1602 |
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1603 |
)
|
1604 |
|
1605 |
-
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
|
1606 |
decoder_outputs = self.decoder(
|
1607 |
input_ids=decoder_input_ids,
|
1608 |
attention_mask=decoder_attention_mask,
|
@@ -1727,7 +1589,6 @@ class RotaryIndicTransForConditionalGeneration(RotaryIndicTransPreTrainedModel):
|
|
1727 |
|
1728 |
masked_lm_loss = None
|
1729 |
if labels is not None:
|
1730 |
-
# move labels to the correct device to enable PP
|
1731 |
labels = labels.to(lm_logits.device)
|
1732 |
masked_lm_loss = F.cross_entropy(
|
1733 |
input=lm_logits.view(-1, self.config.decoder_vocab_size),
|
@@ -1766,12 +1627,11 @@ class RotaryIndicTransForConditionalGeneration(RotaryIndicTransPreTrainedModel):
|
|
1766 |
encoder_outputs=None,
|
1767 |
**kwargs,
|
1768 |
):
|
1769 |
-
# cut decoder_input_ids if past is used
|
1770 |
if past_key_values is not None:
|
1771 |
decoder_input_ids = decoder_input_ids[:, -1:]
|
1772 |
|
1773 |
return {
|
1774 |
-
"input_ids": None,
|
1775 |
"encoder_outputs": encoder_outputs,
|
1776 |
"past_key_values": past_key_values,
|
1777 |
"decoder_input_ids": decoder_input_ids,
|
@@ -1779,7 +1639,7 @@ class RotaryIndicTransForConditionalGeneration(RotaryIndicTransPreTrainedModel):
|
|
1779 |
"head_mask": head_mask,
|
1780 |
"decoder_head_mask": decoder_head_mask,
|
1781 |
"cross_attn_head_mask": cross_attn_head_mask,
|
1782 |
-
"use_cache": use_cache,
|
1783 |
}
|
1784 |
|
1785 |
@staticmethod
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import math
|
2 |
from typing import List, Optional, Tuple, Union
|
3 |
|
|
|
21 |
Seq2SeqModelOutput,
|
22 |
)
|
23 |
|
24 |
+
from transformers.utils import logging
|
25 |
+
from einops import rearrange, repeat
|
|
|
|
|
|
|
26 |
|
27 |
+
from torch.amp import autocast
|
28 |
+
from torch import einsum
|
|
|
29 |
|
30 |
+
from transformers.modeling_utils import PreTrainedModel
|
31 |
+
from configuration_rotary_indictrans import RotaryIndicTransConfig
|
|
|
|
|
32 |
|
33 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
34 |
+
from flash_attn.bert_padding import (
|
35 |
+
index_first_axis,
|
36 |
+
pad_input,
|
37 |
+
unpad_input,
|
38 |
+
)
|
39 |
|
40 |
logger = logging.get_logger(__name__)
|
41 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
|
44 |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
|
|
58 |
def shift_tokens_right(
|
59 |
input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int
|
60 |
):
|
|
|
|
|
|
|
61 |
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
62 |
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
|
63 |
shifted_input_ids[:, 0] = decoder_start_token_id
|
64 |
|
65 |
if pad_token_id is None:
|
66 |
raise ValueError("self.model.config.pad_token_id has to be defined.")
|
|
|
|
|
67 |
|
68 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
69 |
return shifted_input_ids
|
70 |
|
71 |
|
72 |
def create_position_ids_from_input_ids(
|
73 |
input_ids, padding_idx, past_key_values_length=0
|
74 |
):
|
|
|
|
|
|
|
|
|
|
|
75 |
mask = input_ids.ne(padding_idx).int()
|
76 |
incremental_indices = (
|
77 |
torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length
|
|
|
79 |
return incremental_indices.long() + padding_idx
|
80 |
|
81 |
|
82 |
+
def rotate_half(x):
|
83 |
+
x = rearrange(x, "... (d r) -> ... d r", r=2)
|
84 |
+
x1, x2 = x.unbind(dim=-1)
|
85 |
+
x = torch.stack((-x2, x1), dim=-1)
|
86 |
+
return rearrange(x, "... d r -> ... (d r)")
|
87 |
+
|
88 |
+
|
89 |
+
@autocast("cuda", enabled=False)
|
90 |
+
def apply_rotary_emb(cos, sin, t):
|
91 |
+
rot_dim = cos.shape[-1]
|
92 |
+
assert rot_dim <= t.shape[-1] and cos.shape == sin.shape
|
93 |
+
t_left, t_right = t[..., :rot_dim], t[..., rot_dim:]
|
94 |
+
t_transformed = (t_left * cos) + (rotate_half(t_left) * sin)
|
95 |
+
return torch.cat((t_transformed, t_right), dim=-1).type(t.dtype)
|
96 |
+
|
97 |
+
|
98 |
+
class RotaryEmbedding(torch.nn.Module):
|
99 |
+
def __init__(
|
100 |
+
self, dim, theta=10000, interpolate_factor=1.0, cache_max_seq_len=8192
|
101 |
+
):
|
102 |
+
super().__init__()
|
103 |
+
|
104 |
+
freqs_ = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim))
|
105 |
+
self.cache_max_seq_len = cache_max_seq_len
|
106 |
+
self.interpolate_factor = interpolate_factor
|
107 |
+
|
108 |
+
self.freqs = torch.nn.Parameter(freqs_, requires_grad=False).to(device)
|
109 |
+
self.apply_rotary_emb = staticmethod(apply_rotary_emb)
|
110 |
+
self.precompute_freqs(cache_max_seq_len)
|
111 |
+
|
112 |
+
def precompute_freqs(self, max_seq_len):
|
113 |
+
thetas = self.forward(max_seq_len, device=device)
|
114 |
+
self.register_buffer("cached_cos", thetas.cos(), persistent=False)
|
115 |
+
self.register_buffer("cached_sin", thetas.sin(), persistent=False)
|
116 |
+
|
117 |
+
def rotate_queries_or_keys(self, t, seq_dim=-2, offset=0):
|
118 |
+
seq_len = t.shape[seq_dim]
|
119 |
+
|
120 |
+
if seq_len > self.cache_max_seq_len:
|
121 |
+
self.cache_max_seq_len = seq_len * 2
|
122 |
+
self.precompute_freqs(self.cache_max_seq_len)
|
123 |
+
|
124 |
+
cos, sin = (
|
125 |
+
self.cached_cos[offset : (offset + seq_len)],
|
126 |
+
self.cached_sin[offset : (offset + seq_len)],
|
127 |
+
)
|
128 |
+
return apply_rotary_emb(cos, sin, t)
|
129 |
+
|
130 |
+
@autocast("cuda", enabled=False)
|
131 |
+
def forward(self, seq_len, device):
|
132 |
+
seq = torch.arange(seq_len, device=device) / self.interpolate_factor
|
133 |
+
thetas = einsum("..., f -> ... f", seq, self.freqs)
|
134 |
+
thetas = repeat(thetas, "... n -> ... (n r)", r=2)
|
135 |
+
return thetas
|
136 |
+
|
137 |
+
|
138 |
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->RotaryIndicTrans
|
139 |
class RotaryIndicTransAttention(nn.Module):
|
|
|
|
|
140 |
def __init__(
|
141 |
self,
|
142 |
embed_dim: int,
|
|
|
149 |
config: Optional[RotaryIndicTransConfig] = None,
|
150 |
):
|
151 |
super().__init__()
|
152 |
+
self.config = config
|
153 |
self.embed_dim = embed_dim
|
154 |
self.num_heads = num_heads
|
155 |
self.dropout = dropout
|
156 |
self.head_dim = embed_dim // num_heads
|
|
|
|
|
157 |
|
158 |
if (self.head_dim * num_heads) != self.embed_dim:
|
159 |
raise ValueError(
|
|
|
164 |
self.is_decoder = is_decoder
|
165 |
self.is_causal = is_causal
|
166 |
|
|
|
|
|
167 |
# partial rotation in RoPE
|
168 |
self.rotary_pos_embed = (
|
169 |
RotaryEmbedding(
|
170 |
dim=self.head_dim // 2,
|
171 |
+
theta=config.rope_args.get("theta", 10000),
|
172 |
+
interpolate_factor=config.rope_args.get("interpolate_factor", 1.0),
|
|
|
173 |
)
|
174 |
if not is_cross_attention
|
175 |
else None
|
|
|
191 |
q = rearrange(q, "(b h) t d -> b h t d", h=self.num_heads)
|
192 |
k = rearrange(k, "(b h) t d -> b h t d", h=self.num_heads)
|
193 |
|
194 |
+
offset = (k.shape[-2] - 1) if is_inference else 0
|
195 |
+
|
196 |
+
q = self.rotary_pos_embed.rotate_queries_or_keys(q, offset=offset)
|
197 |
+
k = self.rotary_pos_embed.rotate_queries_or_keys(k)
|
|
|
|
|
|
|
|
|
198 |
|
199 |
q = rearrange(q, "b h t d -> (b h) t d")
|
200 |
k = rearrange(k, "b h t d -> (b h) t d")
|
|
|
211 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
212 |
"""Input shape: Batch x Time x Channel"""
|
213 |
|
|
|
|
|
214 |
is_cross_attention = key_value_states is not None
|
215 |
|
216 |
bsz, tgt_len, _ = hidden_states.size()
|
217 |
|
|
|
218 |
query_states = self.q_proj(hidden_states) * self.scaling
|
219 |
+
|
|
|
|
|
|
|
220 |
if (
|
221 |
is_cross_attention
|
222 |
and past_key_value is not None
|
223 |
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
224 |
):
|
|
|
225 |
key_states = past_key_value[0]
|
226 |
value_states = past_key_value[1]
|
227 |
elif is_cross_attention:
|
|
|
228 |
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
229 |
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
230 |
elif past_key_value is not None:
|
|
|
231 |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
232 |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
233 |
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
234 |
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
235 |
else:
|
|
|
236 |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
237 |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
238 |
|
239 |
if self.is_decoder:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
past_key_value = (key_states, value_states)
|
241 |
|
242 |
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
|
|
284 |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
285 |
|
286 |
if output_attentions:
|
|
|
|
|
|
|
|
|
287 |
attn_weights_reshaped = attn_weights.view(
|
288 |
bsz, self.num_heads, tgt_len, src_len
|
289 |
)
|
|
|
303 |
f" {attn_output.size()}"
|
304 |
)
|
305 |
|
306 |
+
attn_output = rearrange(
|
307 |
+
attn_output, "(b h) t d -> b t (h d)", h=self.num_heads, d=self.head_dim
|
308 |
+
)
|
|
|
|
|
|
|
309 |
|
310 |
attn_output = self.out_proj(attn_output)
|
|
|
311 |
return attn_output, attn_weights_reshaped, past_key_value
|
312 |
|
313 |
|
314 |
class RotaryIndicTransFlashAttention2(RotaryIndicTransAttention):
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
316 |
def __init__(self, *args, **kwargs):
|
317 |
super().__init__(*args, **kwargs)
|
318 |
|
|
|
|
|
|
|
|
|
|
|
319 |
def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
320 |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
|
321 |
|
|
|
334 |
"RotaryIndicTransFlashAttention2 attention does not support output_attentions"
|
335 |
)
|
336 |
|
|
|
|
|
337 |
is_cross_attention = key_value_states is not None
|
338 |
|
339 |
bsz, q_len, _ = hidden_states.size()
|
340 |
|
|
|
341 |
query_states = self._reshape(self.q_proj(hidden_states), -1, bsz)
|
342 |
+
|
|
|
|
|
|
|
343 |
if (
|
344 |
is_cross_attention
|
345 |
and past_key_value is not None
|
346 |
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
347 |
):
|
|
|
348 |
key_states = past_key_value[0].transpose(1, 2)
|
349 |
value_states = past_key_value[1].transpose(1, 2)
|
350 |
elif is_cross_attention:
|
|
|
351 |
key_states = self._reshape(self.k_proj(key_value_states), -1, bsz)
|
352 |
value_states = self._reshape(self.v_proj(key_value_states), -1, bsz)
|
353 |
elif past_key_value is not None:
|
|
|
354 |
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
|
355 |
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
|
356 |
key_states = torch.cat(
|
|
|
360 |
[past_key_value[1].transpose(1, 2), value_states], dim=1
|
361 |
)
|
362 |
else:
|
|
|
363 |
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
|
364 |
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
|
365 |
|
366 |
if self.is_decoder:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2))
|
368 |
|
369 |
kv_seq_len = key_states.shape[-2]
|
370 |
if past_key_value is not None:
|
371 |
kv_seq_len += past_key_value[0].shape[-2]
|
372 |
|
|
|
|
|
|
|
|
|
|
|
|
|
373 |
input_dtype = query_states.dtype
|
374 |
if input_dtype == torch.float32:
|
375 |
if torch.is_autocast_enabled():
|
|
|
442 |
softmax_scale (`float`, *optional*):
|
443 |
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
444 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
445 |
# Contains at least one padding token in the sequence
|
446 |
if attention_mask is not None:
|
447 |
batch_size = query_states.shape[0]
|
|
|
469 |
max_seqlen_k=max_seqlen_in_batch_k,
|
470 |
dropout_p=dropout,
|
471 |
softmax_scale=softmax_scale,
|
472 |
+
causal=self.is_causal,
|
473 |
)
|
474 |
|
475 |
attn_output = pad_input(
|
|
|
482 |
value_states,
|
483 |
dropout,
|
484 |
softmax_scale=softmax_scale,
|
485 |
+
causal=self.is_causal,
|
486 |
)
|
487 |
|
488 |
return attn_output
|
|
|
514 |
max_seqlen_in_batch_q = 1
|
515 |
cu_seqlens_q = torch.arange(
|
516 |
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
517 |
+
)
|
518 |
indices_q = cu_seqlens_q[:-1]
|
519 |
query_layer = query_layer.squeeze(1)
|
520 |
else:
|
|
|
521 |
attention_mask = attention_mask[:, -query_length:]
|
522 |
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
|
523 |
query_layer, attention_mask
|
|
|
545 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
546 |
"""Input shape: Batch x Time x Channel"""
|
547 |
if output_attentions or layer_head_mask is not None:
|
|
|
548 |
logger.warning_once(
|
549 |
"RotaryIndicTransModel is using RotaryIndicTransSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention"
|
550 |
' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
|
|
558 |
output_attentions=output_attentions,
|
559 |
)
|
560 |
|
|
|
|
|
561 |
is_cross_attention = key_value_states is not None
|
562 |
|
563 |
bsz, tgt_len, _ = hidden_states.size()
|
564 |
|
|
|
565 |
query_states = self.q_proj(hidden_states)
|
566 |
+
|
|
|
|
|
|
|
567 |
if (
|
568 |
is_cross_attention
|
569 |
and past_key_value is not None
|
570 |
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
571 |
):
|
|
|
572 |
key_states = past_key_value[0]
|
573 |
value_states = past_key_value[1]
|
574 |
elif is_cross_attention:
|
|
|
575 |
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
576 |
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
577 |
elif past_key_value is not None:
|
|
|
578 |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
579 |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
580 |
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
581 |
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
582 |
else:
|
|
|
583 |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
584 |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
585 |
|
586 |
if self.is_decoder:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
587 |
past_key_value = (key_states, value_states)
|
588 |
|
589 |
query_states = self._shape(query_states, tgt_len, bsz)
|
|
|
593 |
query_states, key_states, is_inference=past_key_value is not None
|
594 |
)
|
595 |
|
|
|
|
|
596 |
attn_output = F.scaled_dot_product_attention(
|
597 |
query_states,
|
598 |
key_states,
|
599 |
value_states,
|
600 |
attn_mask=attention_mask,
|
601 |
dropout_p=self.dropout if self.training else 0.0,
|
|
|
602 |
is_causal=self.is_causal and attention_mask is None and tgt_len > 1,
|
603 |
)
|
604 |
|
|
|
608 |
f" {attn_output.size()}"
|
609 |
)
|
610 |
|
611 |
+
attn_output = rearrange(
|
612 |
+
attn_output, "b h t d -> b t (h d)", h=self.num_heads, d=self.head_dim
|
613 |
+
)
|
|
|
|
|
|
|
614 |
attn_output = self.out_proj(attn_output)
|
|
|
615 |
return attn_output, None, past_key_value
|
616 |
|
617 |
|
|
|
776 |
if self.normalize_before:
|
777 |
hidden_states = self.self_attn_layer_norm(hidden_states)
|
778 |
|
|
|
|
|
779 |
self_attn_past_key_value = (
|
780 |
past_key_value[:2] if past_key_value is not None else None
|
781 |
)
|
782 |
+
|
783 |
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
784 |
hidden_states=hidden_states,
|
785 |
past_key_value=self_attn_past_key_value,
|
|
|
792 |
if not self.normalize_before:
|
793 |
hidden_states = self.self_attn_layer_norm(hidden_states)
|
794 |
|
|
|
795 |
cross_attn_present_key_value = None
|
796 |
cross_attn_weights = None
|
797 |
if encoder_hidden_states is not None:
|
|
|
799 |
if self.normalize_before:
|
800 |
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
801 |
|
|
|
802 |
cross_attn_past_key_value = (
|
803 |
past_key_value[-2:] if past_key_value is not None else None
|
804 |
)
|
|
|
821 |
if not self.normalize_before:
|
822 |
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
823 |
|
|
|
824 |
present_key_value = present_key_value + cross_attn_present_key_value
|
825 |
|
|
|
826 |
residual = hidden_states
|
827 |
if self.normalize_before:
|
828 |
hidden_states = self.final_layer_norm(hidden_states)
|
|
|
872 |
|
873 |
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100EncoderLayer->RotaryIndicTrans
|
874 |
class RotaryIndicTransEncoder(RotaryIndicTransPreTrainedModel):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
875 |
def __init__(
|
876 |
self,
|
877 |
config: RotaryIndicTransConfig,
|
|
|
907 |
self._use_sdpa = config._attn_implementation == "sdpa"
|
908 |
|
909 |
self.gradient_checkpointing = False
|
|
|
910 |
self.post_init()
|
911 |
|
912 |
def forward(
|
|
|
969 |
return_dict if return_dict is not None else self.config.use_return_dict
|
970 |
)
|
971 |
|
|
|
972 |
if input_ids is not None and inputs_embeds is not None:
|
973 |
raise ValueError(
|
974 |
"You cannot specify both input_ids and inputs_embeds at the same time"
|
|
|
995 |
if self._use_flash_attention_2:
|
996 |
attention_mask = attention_mask if 0 in attention_mask else None
|
997 |
elif self._use_sdpa and head_mask is None and not output_attentions:
|
|
|
|
|
|
|
998 |
attention_mask = _prepare_4d_attention_mask_for_sdpa(
|
999 |
attention_mask, inputs_embeds.dtype
|
1000 |
)
|
1001 |
else:
|
|
|
1002 |
attention_mask = _prepare_4d_attention_mask(
|
1003 |
attention_mask, inputs_embeds.dtype
|
1004 |
)
|
|
|
1006 |
encoder_states = () if output_hidden_states else None
|
1007 |
all_attentions = () if output_attentions else None
|
1008 |
|
|
|
1009 |
if head_mask is not None:
|
1010 |
if head_mask.size()[0] != len(self.layers):
|
1011 |
raise ValueError(
|
|
|
1018 |
if output_hidden_states:
|
1019 |
encoder_states = encoder_states + (hidden_states,)
|
1020 |
|
|
|
1021 |
dropout_probability = torch.rand([])
|
1022 |
|
1023 |
skip_the_layer = (
|
|
|
1026 |
else False
|
1027 |
)
|
1028 |
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
|
|
|
|
1029 |
if self.gradient_checkpointing and self.training:
|
1030 |
+
|
1031 |
def create_custom_forward(module):
|
1032 |
def custom_forward(*inputs):
|
1033 |
return module(*inputs, output_attentions)
|
|
|
1079 |
|
1080 |
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100DecoderLayer->RotaryIndicTrans
|
1081 |
class RotaryIndicTransDecoder(RotaryIndicTransPreTrainedModel):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1082 |
def __init__(
|
1083 |
self,
|
1084 |
config: RotaryIndicTransConfig,
|
|
|
1113 |
self._use_sdpa = config._attn_implementation == "sdpa"
|
1114 |
|
1115 |
self.gradient_checkpointing = False
|
|
|
1116 |
self.post_init()
|
1117 |
|
1118 |
def forward(
|
|
|
1210 |
return_dict if return_dict is not None else self.config.use_return_dict
|
1211 |
)
|
1212 |
|
|
|
1213 |
if input_ids is not None and inputs_embeds is not None:
|
1214 |
raise ValueError(
|
1215 |
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
|
|
|
1224 |
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
1225 |
)
|
1226 |
|
|
|
1227 |
past_key_values_length = (
|
1228 |
past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
1229 |
)
|
|
|
1232 |
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
1233 |
|
1234 |
if self._use_flash_attention_2:
|
|
|
1235 |
attention_mask = (
|
1236 |
attention_mask
|
1237 |
if (attention_mask is not None and 0 in attention_mask)
|
1238 |
else None
|
1239 |
)
|
1240 |
elif self._use_sdpa and not output_attentions and cross_attn_head_mask is None:
|
|
|
|
|
1241 |
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
1242 |
attention_mask,
|
1243 |
input_shape,
|
|
|
1245 |
past_key_values_length,
|
1246 |
)
|
1247 |
else:
|
|
|
1248 |
attention_mask = _prepare_4d_causal_attention_mask(
|
1249 |
attention_mask, input_shape, inputs_embeds, past_key_values_length
|
1250 |
)
|
1251 |
|
|
|
1252 |
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
1253 |
if self._use_flash_attention_2:
|
1254 |
encoder_attention_mask = (
|
|
|
1259 |
and cross_attn_head_mask is None
|
1260 |
and not output_attentions
|
1261 |
):
|
|
|
|
|
|
|
1262 |
encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
|
1263 |
encoder_attention_mask,
|
1264 |
inputs_embeds.dtype,
|
1265 |
tgt_len=input_shape[-1],
|
1266 |
)
|
1267 |
else:
|
|
|
1268 |
encoder_attention_mask = _prepare_4d_attention_mask(
|
1269 |
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
1270 |
)
|
|
|
1284 |
)
|
1285 |
use_cache = False
|
1286 |
|
|
|
1287 |
all_hidden_states = () if output_hidden_states else None
|
1288 |
all_self_attns = () if output_attentions else None
|
1289 |
all_cross_attentions = () if output_attentions else None
|
1290 |
next_decoder_cache = () if use_cache else None
|
1291 |
|
|
|
1292 |
for attn_mask, mask_name in zip(
|
1293 |
[head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]
|
1294 |
):
|
|
|
1304 |
if output_hidden_states:
|
1305 |
all_hidden_states += (hidden_states,)
|
1306 |
|
|
|
1307 |
dropout_probability = torch.rand([])
|
1308 |
|
1309 |
skip_the_layer = (
|
|
|
1312 |
else False
|
1313 |
)
|
1314 |
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
|
|
|
|
1315 |
past_key_value = (
|
1316 |
past_key_values[idx] if past_key_values is not None else None
|
1317 |
)
|
|
|
1373 |
if self.layer_norm is not None:
|
1374 |
hidden_states = self.layer_norm(hidden_states)
|
1375 |
|
|
|
1376 |
if output_hidden_states:
|
1377 |
all_hidden_states += (hidden_states,)
|
1378 |
|
|
|
1407 |
|
1408 |
self.encoder = RotaryIndicTransEncoder(config)
|
1409 |
self.decoder = RotaryIndicTransDecoder(config)
|
|
|
|
|
1410 |
self.post_init()
|
1411 |
|
1412 |
def get_encoder(self):
|
|
|
1458 |
output_hidden_states=output_hidden_states,
|
1459 |
return_dict=return_dict,
|
1460 |
)
|
|
|
1461 |
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
1462 |
encoder_outputs = BaseModelOutput(
|
1463 |
last_hidden_state=encoder_outputs[0],
|
|
|
1465 |
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1466 |
)
|
1467 |
|
|
|
1468 |
decoder_outputs = self.decoder(
|
1469 |
input_ids=decoder_input_ids,
|
1470 |
attention_mask=decoder_attention_mask,
|
|
|
1589 |
|
1590 |
masked_lm_loss = None
|
1591 |
if labels is not None:
|
|
|
1592 |
labels = labels.to(lm_logits.device)
|
1593 |
masked_lm_loss = F.cross_entropy(
|
1594 |
input=lm_logits.view(-1, self.config.decoder_vocab_size),
|
|
|
1627 |
encoder_outputs=None,
|
1628 |
**kwargs,
|
1629 |
):
|
|
|
1630 |
if past_key_values is not None:
|
1631 |
decoder_input_ids = decoder_input_ids[:, -1:]
|
1632 |
|
1633 |
return {
|
1634 |
+
"input_ids": None,
|
1635 |
"encoder_outputs": encoder_outputs,
|
1636 |
"past_key_values": past_key_values,
|
1637 |
"decoder_input_ids": decoder_input_ids,
|
|
|
1639 |
"head_mask": head_mask,
|
1640 |
"decoder_head_mask": decoder_head_mask,
|
1641 |
"cross_attn_head_mask": cross_attn_head_mask,
|
1642 |
+
"use_cache": use_cache,
|
1643 |
}
|
1644 |
|
1645 |
@staticmethod
|