File size: 1,925 Bytes
e8758ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
language:
- en
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- google/boolq
metrics:
- accuracy
model-index:
- name: Bert Base Uncased Boolean Question Answer model
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: boolq
type: google/boolq
metrics:
- name: Accuracy
type: accuracy
value: 0.7149847094801223
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Bert Base Uncased Boolean Question Answer model
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the boolq dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1993
- Accuracy: 0.7150
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.2317 | 0.9966 | 147 | 0.2198 | 0.6569 |
| 0.2 | 2.0 | 295 | 0.2002 | 0.6960 |
| 0.1741 | 2.9966 | 442 | 0.1968 | 0.7122 |
| 0.1469 | 3.9864 | 588 | 0.1993 | 0.7150 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.2+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|