File size: 2,398 Bytes
e8758ba
 
 
9aa5231
ddb8621
9aa5231
e8758ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23c65b2
 
 
e8758ba
 
 
 
 
 
 
23c65b2
e8758ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
language:
- en
widget:
- text: "did abraham lincoln write the letter in saving private ryan <sep> In the 1998 war film Saving Private Ryan, General George Marshall (played by Harve Presnell) reads the Bixby letter to his officers before giving the order to find and send home Private James Francis Ryan after Ryan's three brothers died in battle."
  example_title: "Bool QA"
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- google/boolq
metrics:
- accuracy
model-index:
- name: Bert Base Uncased Boolean Question Answer model
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: boolq
      type: google/boolq
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.7149847094801223
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Bert Base Uncased Boolean Question Answer model

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the boolq dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1993
- Accuracy: 0.7150

## Model description

- **Model type:** Text Classification model
- **Language(s) (NLP):** English
- **License:** Apache 2.0

## Intended uses & limitations

More information needed

## Training and evaluation data

- [Dataset](https://huggingface.co/datasets/google/boolq)

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.2317        | 0.9966 | 147  | 0.2198          | 0.6569   |
| 0.2           | 2.0    | 295  | 0.2002          | 0.6960   |
| 0.1741        | 2.9966 | 442  | 0.1968          | 0.7122   |
| 0.1469        | 3.9864 | 588  | 0.1993          | 0.7150   |


### Framework versions

- Transformers 4.40.0
- Pytorch 2.2.2+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1