File size: 2,500 Bytes
6b28729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
base_model: google/mt5-small
tags:
- summarization
- generated_from_trainer
datasets:
- web_nlg
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-amazon-en-es
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: web_nlg
      type: web_nlg
      config: en
      split: validation
      args: en
    metrics:
    - name: Rouge1
      type: rouge
      value: 76.7573
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-small-finetuned-amazon-en-es

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the web_nlg dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1274
- Rouge1: 76.7573
- Rouge2: 70.2881
- Rougel: 74.6384
- Rougelsum: 74.6743

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 1.9276        | 1.0   | 4429  | 0.4272          | 68.6843 | 56.7537 | 65.8818 | 65.9389   |
| 0.5548        | 2.0   | 8858  | 0.2903          | 72.0968 | 62.884  | 69.6164 | 69.6271   |
| 0.3936        | 3.0   | 13287 | 0.2308          | 73.8306 | 65.8224 | 71.4996 | 71.4971   |
| 0.3093        | 4.0   | 17716 | 0.1632          | 75.0861 | 67.7273 | 72.9128 | 72.9615   |
| 0.2592        | 5.0   | 22145 | 0.1484          | 75.7699 | 68.7078 | 73.5831 | 73.5905   |
| 0.2295        | 6.0   | 26574 | 0.1353          | 76.4394 | 69.689  | 74.3168 | 74.3496   |
| 0.2117        | 7.0   | 31003 | 0.1289          | 76.6532 | 69.9438 | 74.5065 | 74.5616   |
| 0.2026        | 8.0   | 35432 | 0.1274          | 76.7573 | 70.2881 | 74.6384 | 74.6743   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0