File size: 1,154 Bytes
1ebb59e efe89d0 4731186 efe89d0 39669d6 efe89d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
---
license: apache-2.0
---
model base: https://huggingface.co/microsoft/deberta-v3-base
dataset: https://github.com/ramybaly/Article-Bias-Prediction
training parameters:
- devices: 2xH100
- batch_size: 100
- epochs: 5
- dropout: 0.05
- max_length: 512
- learning_rate: 3e-5
- warmup_steps: 100
- random_state: 239
training methodology:
- sanitize dataset following specific rule-set, utilize random split as provided in the dataset
- train on train split and evaluate on validation split in each epoch
- evaluate test split only on the model that performed best on validation loss
result summary:
- throughout the five training epochs, model of fourth epoch achieved the lowest validation loss of 0.1909
- on test split fourth epoch model achieved f1 score of 0.9427 and a test loss of 0.2168
usage:
```
model = AutoModelForSequenceClassification.from_pretrained("premsa/political-bias-prediction-allsides-DeBERTa")
tokenizer = AutoTokenizer.from_pretrained(premsa/"premsa/political-bias-prediction-allsides-DeBERTa")
nlp = pipeline("text-classification", model=model, tokenizer=tokenizer)
print(nlp("the masses are controlled by media."))
```
|