pritamdeka
commited on
Commit
·
5569d97
1
Parent(s):
847c166
Update README.md
Browse files
README.md
CHANGED
@@ -7,9 +7,9 @@ tags:
|
|
7 |
- transformers
|
8 |
---
|
9 |
|
10 |
-
#
|
11 |
|
12 |
-
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
|
14 |
<!--- Describe your model here -->
|
15 |
|
@@ -27,7 +27,7 @@ Then you can use the model like this:
|
|
27 |
from sentence_transformers import SentenceTransformer
|
28 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
|
30 |
-
model = SentenceTransformer('
|
31 |
embeddings = model.encode(sentences)
|
32 |
print(embeddings)
|
33 |
```
|
@@ -53,8 +53,8 @@ def mean_pooling(model_output, attention_mask):
|
|
53 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
54 |
|
55 |
# Load model from HuggingFace Hub
|
56 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
57 |
-
model = AutoModel.from_pretrained('
|
58 |
|
59 |
# Tokenize sentences
|
60 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
7 |
- transformers
|
8 |
---
|
9 |
|
10 |
+
# pritamdeka/PubMedBERT-mnli-snli-scinli-scitail-mednli-stsb
|
11 |
|
12 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It has been trained over the SNLI, MNLI, SCINLI, SCITAIL, MEDNLI and STSB datasets for providing robust sentence embeddings.
|
13 |
|
14 |
<!--- Describe your model here -->
|
15 |
|
|
|
27 |
from sentence_transformers import SentenceTransformer
|
28 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
|
30 |
+
model = SentenceTransformer('pritamdeka/PubMedBERT-mnli-snli-scinli-scitail-mednli-stsb')
|
31 |
embeddings = model.encode(sentences)
|
32 |
print(embeddings)
|
33 |
```
|
|
|
53 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
54 |
|
55 |
# Load model from HuggingFace Hub
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained('pritamdeka/PubMedBERT-mnli-snli-scinli-scitail-mednli-stsb')
|
57 |
+
model = AutoModel.from_pretrained('pritamdeka/PubMedBERT-mnli-snli-scinli-scitail-mednli-stsb')
|
58 |
|
59 |
# Tokenize sentences
|
60 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|