pritamdeka
commited on
Commit
·
ad34b85
1
Parent(s):
3479262
Update README.md
Browse files
README.md
CHANGED
@@ -7,9 +7,9 @@ tags:
|
|
7 |
- transformers
|
8 |
---
|
9 |
|
10 |
-
#
|
11 |
|
12 |
-
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
|
14 |
<!--- Describe your model here -->
|
15 |
|
@@ -27,7 +27,7 @@ Then you can use the model like this:
|
|
27 |
from sentence_transformers import SentenceTransformer
|
28 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
|
30 |
-
model = SentenceTransformer('
|
31 |
embeddings = model.encode(sentences)
|
32 |
print(embeddings)
|
33 |
```
|
@@ -53,8 +53,8 @@ def mean_pooling(model_output, attention_mask):
|
|
53 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
54 |
|
55 |
# Load model from HuggingFace Hub
|
56 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
57 |
-
model = AutoModel.from_pretrained('
|
58 |
|
59 |
# Tokenize sentences
|
60 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -122,4 +122,17 @@ SentenceTransformer(
|
|
122 |
|
123 |
## Citing & Authors
|
124 |
|
125 |
-
<!--- Describe where people can find more information -->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
- transformers
|
8 |
---
|
9 |
|
10 |
+
# pritamdeka/SapBERT-mnli-snli-scinli-scitail-mednli-stsb
|
11 |
|
12 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It has been trained over the SNLI, MNLI, SCINLI, SCITAIL, MEDNLI and STSB datasets for providing robust sentence embeddings.
|
13 |
|
14 |
<!--- Describe your model here -->
|
15 |
|
|
|
27 |
from sentence_transformers import SentenceTransformer
|
28 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
|
30 |
+
model = SentenceTransformer('pritamdeka/SapBERT-mnli-snli-scinli-scitail-mednli-stsb')
|
31 |
embeddings = model.encode(sentences)
|
32 |
print(embeddings)
|
33 |
```
|
|
|
53 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
54 |
|
55 |
# Load model from HuggingFace Hub
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained('pritamdeka/SapBERT-mnli-snli-scinli-scitail-mednli-stsb')
|
57 |
+
model = AutoModel.from_pretrained('pritamdeka/SapBERT-mnli-snli-scinli-scitail-mednli-stsb')
|
58 |
|
59 |
# Tokenize sentences
|
60 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
122 |
|
123 |
## Citing & Authors
|
124 |
|
125 |
+
<!--- Describe where people can find more information -->
|
126 |
+
|
127 |
+
If you use the model kindly cite the following work
|
128 |
+
|
129 |
+
```
|
130 |
+
@inproceedings{deka2022evidence,
|
131 |
+
title={Evidence Extraction to Validate Medical Claims in Fake News Detection},
|
132 |
+
author={Deka, Pritam and Jurek-Loughrey, Anna and others},
|
133 |
+
booktitle={International Conference on Health Information Science},
|
134 |
+
pages={3--15},
|
135 |
+
year={2022},
|
136 |
+
organization={Springer}
|
137 |
+
}
|
138 |
+
```
|